共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(30):8847-8851
DNAzymes are a promising platform for metal ion detection, and a few DNAzyme‐based sensors have been reported to detect metal ions inside cells. However, these methods required an influx of metal ions to increase their concentrations for detection. To address this major issue, the design of a catalytic hairpin assembly (CHA) reaction to amplify the signal from photocaged Na+‐specific DNAzyme to detect endogenous Na+ inside cells is reported. Upon light activation and in the presence of Na+, the NaA43 DNAzyme cleaves its substrate strand and releases a product strand, which becomes an initiator that trigger the subsequent CHA amplification reaction. This strategy allows detection of endogenous Na+ inside cells, which has been demonstrated by both fluorescent imaging of individual cells and flow cytometry of the whole cell population. This method can be generally applied to detect other endogenous metal ions and thus contribute to deeper understanding of the role of metal ions in biological systems. 相似文献
3.
4.
5.
6.
7.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(38):11669-11672
Despite the recent development of highly efficient and stable metal catalysts, conferral of regulatory characteristics to the catalytic reaction in heterogeneous systems remains a challenge. Novel supramolecular nanotubules were prepared by alternative stacking from trimeric macrocycles, which was found to be able to coordinate with Pd cations. The Pd complexes exhibited a high catalytic performance for C−C coupling reaction. Notably, the tubular catalyst was observed to be controlled by supramolecular reversible assembly and showed superior heterogeneous catalytic activity, which was maintained for a number of cycles or reuse under an aerobic environment. Furthermore, the supramolecular catalyst showed unprecedented selectivity for the multifunctional coupling reaction and was able to serve as a new constructor of asymmetrical compounds. 相似文献
8.
9.
10.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(50):16200-16204
Electrodes are ideal substrates for surface localized self‐assembly processes. Spatiotemporal control over such processes is generally directed through the release of ions generated by redox reactions occurring specifically at the electrode. The so‐used gradients of ions proved their effectiveness over the last decade but are in essence limited to material‐based electrodes, considerably reducing the scope of applications. Herein is described a strategy to enzymatically generate proton gradients from non‐conductive surfaces. In the presence of oxygen, immobilization of glucose oxidase (GOx) on a multilayer film provides a flow of protons through enzymatic oxidation of glucose by GOx. The confined acidic environment located at the solid–liquid interface allows the self‐assembly of Fmoc‐AA‐OH (Fmoc=fluorenylmethyloxycarbonyl and A=alanine) dipeptides into β‐sheet nanofibers exclusively from and near the surface. In the absence of oxygen, a multilayer nanoreactor containing GOx and horseradish peroxidase (HRP) similarly induces Fmoc‐AA‐OH self‐assembly. 相似文献
11.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(12):3357-3361
Sialic acid sugars that terminate cell‐surface glycans form the ligands for the sialic acid binding immunoglobulin‐like lectin (Siglec) family, which are immunomodulatory receptors expressed by immune cells. Interactions between sialic acid and Siglecs regulate the immune system, and aberrations contribute to pathologies like autoimmunity and cancer. Sialic acid/Siglec interactions between living cells are difficult to study owing to a lack of specific tools. Here, we report a glycoengineering approach to remodel the sialic acids of living cells and their binding to Siglecs. Using bioorthogonal chemistry, a library of cells with more than sixty different sialic acid modifications was generated that showed dramatically increased binding toward the different Siglec family members. Rational design reduced cross‐reactivity and led to the discovery of three selective Siglec‐5/14 ligands. Furthermore, glycoengineered cells carrying sialic acid ligands for Siglec‐3 dampened the activation of Siglec‐3+ monocytic cells through the NF‐κB and IRF pathways. 相似文献
12.
Vincent H. S. vanRixel Anja Busemann Mathijs F. Wissingh Samantha L. Hopkins Bianka Siewert Corjan vandeGriend Maxime A. Siegler Tiziano Marzo Francesco Papi Marta Ferraroni Paola Gratteri Carla Bazzicalupi Luigi Messori Sylvestre Bonnet 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(28):9478-9482
Four‐way junctions (4WJs) are supramolecular DNA assemblies comprising four interacting DNA strands that in biology are involved in DNA‐damage repair. In this study, a new mononuclear platinum(II) complex 1 was prepared that is capable of driving the crystallization of the DNA oligomer 5′‐d(CGTACG)‐3′ specifically into a 4WJ‐like motif. In the crystal structure of the 1 –CGTACG adduct, the distorted‐square‐planar platinum complex binds to the core of the 4WJ‐like motif through π–π stacking and hydrogen bonding, without forming any platinum–nitrogen coordination bonds. Our observations suggest that the specific molecular properties of the metal complex are crucially responsible for triggering the selective assembly of this peculiar DNA superstructure. 相似文献
13.
14.
15.
16.
17.
18.
19.