首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

2.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

3.
A trinuclear cluster {Cp*Ir[Se2C2(B10H10)]}2W(CO)2 (3) containing Ir-W bonding was obtained from the reaction of 16-electron complex Cp*Ir[Se2C2(B10H10)] with [W(CO)3(py)3] in the presence of BF3 · OEt2, and its structure has been determined by X-ray crystallography.  相似文献   

4.
A series of binuclear complexes [{Cp*Ir(OOCCH2COO)}2(pyrazine)] ( 1 b ), [{Cp*Ir(OOCCH2COO)}2(bpy)] ( 2 b ; bpy=4,4′‐bipyridine), [{Cp*Ir(OOCCH2COO)}2(bpe)] ( 3 b ; bpe=trans‐1,2‐bis(4‐pyridyl)ethylene) and tetranuclear metallamacrocycles [{(Cp*Ir)2(OOC‐C?C‐COO)(pyrazine)}2] ( 1 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpy)}2] ( 2 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpe)}2] ( 3 c ), and [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](pyrazine)}2] ( 1 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpy)}2] ( 2 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpe)}2] ( 3 d ) were formed by reactions of 1 a – 3 a {[(Cp*Ir)2(pyrazine)Cl2] ( 1 a ), [(Cp*Ir)2(bpy)Cl2] ( 2 a ), and [(Cp*Ir)2(bpe)Cl2] ( 3 a )} with malonic acid, fumaric acid, or H2ADB (azobenzene‐4,4′‐chcarboxylic acid), respectively, under mild conditions. The metallamacrocycles were directly self‐assembled by activation of C? H bonds from dicarboxylic acids. Interestingly, after exposure to UV/Vis light, 3 c was converted to [2+2] cycloaddition complex 4 . The molecular structures of 2 b , 1 c , 1 d , and 4 were characterized by single‐crystal x‐ray crystallography. Nanosized tubular channels, which may play important roles for their stability, were also observed in 1 c , 1 d , and 4 . All complexes were well characterized by 1H NMR and IR spectroscopy, as well as elemental analysis.  相似文献   

5.
Metalloradical species [Co2Fv(CO)4].+ ( 1 .+, Fv=fulvalenediyl) and [Co2Cp2(CO)4].+ ( 2 .+, Cp=η5‐C5H5), formed by one‐electron oxidations of piano‐stool cobalt carbonyl complexes, can be stabilized with weakly coordinating polyfluoroaluminate anions in the solid state. They feature a supported and an unsupported (i.e. unbridged) cobalt–cobalt three‐electron σ bond, respectively, each with a formal bond order of 0.5 (hemi‐bond). When Cp is replaced by bulkier Cp* (Cp*=η5‐C5Me5), an interchange between an unsupported radical [Co2Cp*2(CO)4].+ (anti‐ 3 .+) and a supported radical [Co2Cp*2(μ‐CO)2(CO)2].+ (trans‐ 3 .+) is observed in solution, which cocrystallize and exist in the crystal phase. 2 .+ and anti‐ 3 .+ are the first stable thus isolable examples that feature an unsupported metal–metal hemi‐bond, and the coexistence of anti‐ 3 .+ and trans‐ 3 .+ in one crystal is unprecedented in the field of dinuclear metalloradical chemistry. The work suggests that more stable metalloradicals of metal–metal hemi‐bonds may be accessible by using metal carbonyls together with large and weakly coordinating polyfluoroaluminate anions.  相似文献   

6.
Reaction of [1,2‐(Cp*RuH)2B3H7] ( 1 ; Cp*=η5‐C5Me5) with [Mo(CO)3(CH3CN)3] yielded arachno‐[(Cp*RuCO)2B2H6] ( 2 ), which exhibits a butterfly structure, reminiscent of 7 sep B4H10. Compound 2 was found to be a very good precursor for the generation of bridged borylene species. Mild pyrolysis of 2 with [Fe2(CO)9] yielded a triply bridged heterotrinuclear borylene complex [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 3 ) and bis‐borylene complexes [{(μ3‐BH)(Cp*Ru)(μ‐CO)}2Fe2(CO)5] ( 4 ) and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 5 ). In a similar fashion, pyrolysis of 2 with [Mn2(CO)10] permits the isolation of μ3‐borylene complex [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ). Both compounds 3 and 6 have a trigonal‐pyramidal geometry with the μ3‐BH ligand occupying the apical vertex, whereas 4 and 5 can be viewed as bicapped tetrahedra, with two μ3‐borylene ligands occupying the capping position. The synthesis of tantalum borylene complex [(μ3‐BH)(Cp*TaCO)2(μ‐CO){Fe(CO)3}] ( 7 ) was achieved by the reaction of [(Cp*Ta)2B4H8(μ‐BH4)] at ambient temperature with [Fe2(CO)9]. Compounds 2 – 7 have been isolated in modest yield as yellow to red crystalline solids. All the new compounds have been characterized in solution by mass spectrometry; IR spectroscopy; and 1H, 11B, and 13C NMR spectroscopy and the structural types were unequivocally established by crystallographic analysis of 2 – 6 .  相似文献   

7.
Building upon our earlier results on the synthesis of electron‐precise transition‐metal–boron complexes, we continue to investigate the reactivity of pentaborane(9) and tetraborane(10) analogues of ruthenium and rhodium towards thiazolyl and oxazolyl ligands. Thus, mild thermolysis of nido‐[(Cp*RuH)2B3H7] ( 1 ) with 2‐mercaptobenzothiazole (2‐mbtz) and 2‐mercaptobenzoxazole (2‐mboz) led to the isolation of Cp*‐based (Cp*=η5‐C5Me5) borate complexes 5 a , b [Cp*RuBH3L] ( 5 a : L=C7H4NS2; 5 b : L=C7H4NOS)) and agostic complexes 7 a , b [Cp*RuBH2(L)2], ( 7 a : L=C7H4NS2; 7 b : L=C7H4NOS). In a similar fashion, a rhodium analogue of pentaborane(9), nido‐[(Cp*Rh)2B3H7] ( 2 ) yielded rhodaboratrane [Cp*RhBH(L)2], 10 (L=C7H4NS2). Interestingly, when the reaction was performed with an excess of 2‐mbtz, it led to the formation of the first structurally characterized N,S‐heterocyclic rhodium‐carbene complex [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 11 ) (L=C7H4NS2). Furthermore, to evaluate the scope of this new route, we extended this chemistry towards the diruthenium analogue of tetraborane(10), arachno‐[(Cp*RuCO)2B2H6] ( 3 ), in which the metal center possesses different ancillary ligands.  相似文献   

8.
The reaction of the [(η-9-SMe2-7,8-C2B9H10)IrBr2]2 complex with Tl[Tl(η-7,8-C2B9H11)] afforded the iridacarborane compound (η-9-SMe2-7,8-C2B9H10)Ir(η-7,8-C2B9H11). The cationic complex [Cp*Ir(η-9-SMe2-7,8-C2B9H10)]+PF6 (5 · PF6, Cp* is pentamethylcyclopentadienyl) was synthesized by the reaction of [Cp*IrCl2]2 with Na[9-SMe2-7,8-C2B9H10]. The structures of (η-9-SMe2-7,8-C2B9H10)Ir(η-cod) (cod is 1,5-cyclooctadiene) and 5 · PF6 were established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 81–84, January, 2006.  相似文献   

9.
A high‐yielding synthetic route for the preparation of group 9 metallaboratrane complexes [Cp*MBH(L)2], 1 and 2 ( 1 , M=Rh, 2 , M=Ir; L=C7H4NS2) has been developed using [{Cp*MCl2}2] as precursor. This method also permitted the synthesis of an Rh–N,S‐heterocyclic carbene complex, [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 3 ; L=C7H4NS2) in good yield. The reaction of compound 3 with neutral borane reagents led to the isolation of a novel borataallyl complex [Cp*Rh(L)2B{CH2C(CO2Me)}] ( 4 ; L=C7H4NS2). Compound 4 features a rare η3‐interaction between rhodium and the B‐C‐C unit of a vinylborane moiety. Furthermore, with the objective of generating metallaboratranes of other early and late transition metals through a transmetallation approach, reactions of rhoda‐ and irida‐boratrane complexes with metal carbonyl compounds were carried out. Although the objective of isolating such complexes was not achieved, several interesting mixed‐metal complexes [{Cp*Rh}{Re(CO)3}(C7H4NS2)3] ( 5 ), [Cp*Rh{Fe2(CO)6}(μ‐CO)S] ( 6 ), and [Cp*RhBH(L)2W(CO)5] ( 7 ; L=C7H4NS2) have been isolated. All of the new compounds have been characterized in solution by mass spectrometry, IR spectroscopy, and 1H, 11B, and 13C NMR spectroscopies, and the structural types of 4 – 7 have been unequivocally established by crystallographic analysis.  相似文献   

10.
[CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] as Educt for Heterobimetallic Dinuclear Clusters with P2 and CnRnP4‐n Ligands (n = 1, 2) The cothermolysis of [CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] ( 1 ) and tBuC≡P ( 2 ) as well as PhC≡CPh ( 3 ) affords the heterobimetallic triple‐decker like dinuclear clusters [(Cp'''Mo)(Cp*′Fe)(P3CtBu)(P2)] ( 4 ), Cp''' = C5H2tBu3‐1,2,4, Cp*′ = C5Me4Et, and [(Cp*Mo)(Cp*Fe)(P2C2Ph2)(P2)] ( 5 ) with a bridging tri‐ and diphosphabutadiendiyl ligand. 4 and 5 have been characterized additionally by X‐ray crystallography.  相似文献   

11.
Trinuclear complexes of group 6, 8, and 9 transition metals with a (μ3‐BH) ligand [(μ3‐BH)(Cp*Rh)2(μ‐CO)M′(CO)5], 3 and 4 ( 3 : M′=Mo; 4 : M′=W) and 5 – 8 , [(Cp*Ru)33‐CO)23‐BH)(μ3‐E)(μ‐H){M′(CO)3}] ( 5 : M′=Cr, E=CO; 6 : M′=Mo, E=CO; 7 : M′=Mo, E=BH; 8 : M′=W, E=CO), have been synthesized from the reaction between nido‐[(Cp*M)2B3H7] (nido‐ 1 : M=Rh; nido‐ 2 : M=RuH, Cp*=η5‐C5Me5) and [M′(CO)5 ? thf] (M′=Mo and W). Compounds 3 and 4 are isoelectronic and isostructural with [(μ3‐BH)(Cp*Co)2(μ‐CO)M′(CO)5], (M′=Cr, Mo and W) and [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2M′′H(CO)3], (M′′=Mn and Re). All compounds are composed of a bridging borylene ligand (B?H) that is effectively stabilized by a trinuclear framework. In contrast, the reaction of nido‐ 1 with [Cr(CO)5 ? thf] gave [(Cp*Rh)2Cr(CO)3(μ‐CO)(μ3‐BH)(B2H4)] ( 9 ). The geometry of 9 can be viewed as a condensed polyhedron composed of [Rh2Cr(μ3‐BH)] and [Rh2CrB2], a tetrahedral and a square pyramidal geometry, respectively. The bonding of 9 can be considered by using the polyhedral fusion formalism of Mingos. All compounds have been characterized by using different spectroscopic studies and the molecular structures were determined by using single‐crystal X‐ray diffraction analysis.  相似文献   

12.
Reaction of [CpnMCl4?x] (M=V: n=x=2; M=Nb: n=1, x=0) or [Cp*TaCl4] (Cp=η5‐C5H5, Cp*=η5‐C5Me5), with [LiBH4?thf] at ?70 °C followed by thermolysis at 85 °C in the presence of [BH3?thf] yielded the hydrogen‐rich metallaboranes [(CpM)2(B2H6)2] ( 1 : M=V; 2 : M = Nb) and [(Cp*Ta)2(B2H6)2] ( 3 ) in modest to high yields. Complexes 1 and 3 are the first structurally characterized compounds with a metal–metal bond bridged by two hexahydroborate (B2H6) groups forming a symmetrical complex. Addition of [BH3?thf] to 3 results in formation of a metallaborane [(Cp*Ta)2B4H8(μ‐BH4)] ( 4 ) containing a tetrahydroborate ligand, [BH4]?, bound exo to the bicapped tetrahedral cage [(Cp*Ta)2B4H8] by two Ta‐H‐B bridge bonds. The interesting structural feature of 4 is the coordination of the bridging tetrahydroborate group, which has two B? H bonds coordinated to the tantalum atoms. All these new metallaboranes have been characterized by mass, 1H, 11B, and 13C NMR spectroscopy and elemental analysis and the structural types were established unequivocally by crystallographic analysis of 1 – 4 .  相似文献   

13.
Wrackmeyer  B.  Yan  Hong  Milius  W.  Herberhold  M. 《Russian Chemical Bulletin》2001,50(9):1518-1524
The reactivity of the 16e half-sandwich complexes Cp*Rh[E2C2(B10H10)] (1a,b), Cp*Ir[E2C2(B10H10)] (2a,b) (E = S (a), Se(b)), (p-cymene)Ru[S2C2(B10H10)] (3), (p-cymene)Os[S2C2(B10H10)] (4) (p-cymene = 1-Me-4-Pri-benzene) towards various alkynes (acetylene, propyne, 3-methoxypropyne, methyl acetylenemonocarboxylate, dimethyl acetylenedicarboxylate, phenylacetylene, ferrocenylacetylene) was studied. The reactions start with an insertion into one of the M—E bonds, followed (except for MeO2C—CC—CO2Me) by intramolecular, metal-induced B—H activation, formation of an M—B bond, accompanied by simultaneous transfer of a hydrogen atom from boron via the metal atom to the alkyne. This leads to new complexes with a cisoidor transoid geometry (orientation of the E—C=C unit with respect to the C(1)—B bond). This geometry determines the course of further intramolecular reactions which lead selectively to carboranes mono- or disubstituted in B(3,6) positions. Numerous intermediates and final products were characterized by X-ray analysis in the solid state, and by multinuclear magnetic resonance in solution. First catalytic applications of 1a,b became evident by cyclotrimerization reactions.  相似文献   

14.
The reactions of Cp*M(PMe3)Cl2 (M = Rh ( 1a ), Ir ( 1b )) with (NEt4)2[WS4] led to the heterodimetallic sulfido‐bridged complexes Cp*M(PMe3)[(μ‐S)2WS2] (M = Rh ( 2a ), Ir ( 2b )), whereas the dimers [Cp*MCl(μ‐Cl)]2 (M = Rh ( 4a ), Ir ( 4b )) reacted with (NEt4)2[WS4) to give the known trinuclear compounds [Cp*M(Cl)]2(μ‐WS4) (M = Rh ( 5a ), Ir ( 5b )). Hydrolysis of the terminal W=S bonds converts 2a, b into Cp*M(PMe3)[(μ‐S)2WO2] (M = Rh ( 3a ), Ir ( 3b )). Salts of a heterodimetallic anion, A[CpMo(I)(NO)(WS4)] ( 6 ) (A+ = NEt4+, NPh4+) were obtained by reactions of [CpMo(NO)I2]2 with tetrathiotungstates, A2[WS4]. The complexes were characterized by IR and NMR (1H, 13C, 31P) spectroscopy, and the X‐ray crystallographic structure of Cp*Rh(PMe3)[(μ‐S)2WS2] ( 2a ) has been determined. The bond lengths and angles in the coordinations spheres of Rh and W in 2a (Rh···W 288.5(1) pm) are compared with related complexes containing terminal [WS42—] chelate ligands.  相似文献   

15.
Formal [2 + 2 + 2] addition reactions of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with PhC?CR (R = H, COOEt) give [Cp*Ru(η6‐C6H5? C9H8R)] BF4 (1a, R = H; 2a, R = COOEt). Treatment of [Cp*Ru(H2O)(NBD)]BF4 with PhC?C? C?CPh does not give [2 + 2 + 2] addition product, but [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BF4(3a). Treatment of 1a, 2a, 3a with NaBPh4 affords [Cp*Ru(η6‐C6H5? C9H8R)] BPh4 (1b, R = H; 2b, R = COOEt) and [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BPh4(3b). The structures of 1b, 2b and 3b were determined by X‐ray crystallography. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

17.
Synthesis and deprotonation reactions of half‐sandwich iridium complexes bearing a vicinal dioxime ligand were studied. Treatment of [{Cp*IrCl(μ‐Cl)}2] (Cp*=η5‐C5Me5) with dimethylglyoxime (LH2) at an Ir:LH2 ratio of 1:1 afforded the cationic dioxime iridium complex [Cp*IrCl(LH2)]Cl ( 1 ). The chlorido complex 1 undergoes stepwise and reversible deprotonation with potassium carbonate to give the oxime–oximato complex [Cp*IrCl(LH)] ( 2 ) and the anionic dioximato(2?) complex K[Cp*IrCl(L)] ( 3 ) sequentially. Meanwhile, twofold deprotonation of the sulfato complex [Cp*Ir(SO4)(LH2)] ( 4 ) resulted in the formation of the oximato‐bridged dinuclear complex [{Cp*Ir(μ‐L)}2] ( 5 ). X‐ray analyses disclosed their supramolecular structures with one‐dimensional infinite chain ( 1 and 2 ), hexagonal open channels ( 3 ), and a tetrameric rhomboid ( 4 ) featuring multiple intermolecular hydrogen bonds and electrostatic interactions.  相似文献   

18.
The room‐temperature reaction of [Cp*TaCl4] with LiBH4?THF followed by addition of S2CPPh3 results in pentahydridodiborate species [(Cp*Ta)2(μ,η22‐B2H5)(μ‐H)(κ2,μ‐S2CH2)2] ( 1 ), a classical [B2H5]? ion stabilized by the binuclear tantalum template. Theoretical studies and bonding analysis established that the unusual stability of [B2H5]? in 1 is mainly due to the stabilization of sp2‐B center by electron donation from tantalum. Reactions to replace the hydrogens attached to the diborane moiety in 1 with a 2 e {M(CO)4} fragment (M=Mo or W) resulted in simple adducts, [{(Cp*Ta)(CH2S2)}2(B2H5)(H){M(CO)3}] ( 6 : M=Mo and 7 : M=W), that retained the diborane(5) unit.  相似文献   

19.
A series of agostic σ‐borane/borate complexes have been synthesized and structurally characterized from simple borane adducts. A room‐temperature reaction of [Cp*Mo(CO)3Me], 1 with Li[BH3(EPh)] (Cp*=pentamethylcyclopentadienyl, E=S, Se, Te) yielded hydroborate complexes [Cp*Mo(CO)2(μ‐H)BH2EPh] in good yields. With 2‐mercapto‐benzothiazole, an N,S‐carbene‐anchored σ‐borate complex [Cp*Mo(CO)2BH3(1‐benzothiazol‐2‐ylidene)] ( 5 ) was isolated. Further, a transmetalation of the B‐agostic ruthenium complex [Cp*Ru(μ‐H)BHL2] ( 6 , L=C7H4NS2) with [Mn2(CO)10] affords a new B‐agostic complex, [Mn(CO)3(μ‐H)BHL2] ( 7 ) with the same structural motif in which the central metal is replaced by an isolobal and isoelectronic [Mn(CO)3] unit. Natural‐bond‐orbital analyses of 5–7 indicate significant delocalization of the electron density from the filled σB?H orbital to the vacant metal orbital.  相似文献   

20.
On the Reactivity of Titanocene Complexes [Ti(Cp′)22‐Me3SiC≡CSiMe3)] (Cp′ = Cp, Cp*) towards Benzenedicarboxylic Acids Titanocene complexes [Ti(Cp′)2(BTMSA)] ( 1a , Cp′ = Cp = η5‐C5H5; 1b , Cp′ = Cp* = η5‐C5Me5; BTMSA = Me3SiC≡CSiMe3) were found to react with iodine and methyl iodide yielding [Ti(Cp′)2(μ‐I)2] ( 2a / b ; a refers to Cp′ = Cp and b to Cp′ = Cp*), [Ti(Cp′)2I2] ( 3a / b ) and [Ti(Cp′)2(Me)I] ( 4a / b ), respectively. In contrast to 2a , complex 2b proved to be highly moisture sensitive yielding with cleavage of HCp* [{Ti(Cp*)I}2(μ‐O)] ( 7 ). The corresponding reactions of 1a / b with p‐cresol and thiophenol resulted in the formation of [Ti(Cp′)2{O(p‐Tol)}2] ( 5a / b ) and [Ti(Cp′)2(SPh)2] ( 6a / b ), respectively. Reactions of 1a and 1b with 1,n‐benzenedicarboxylic acids (n = 2–4) resulted in the formation of dinuclear titanium(III) complexes of the type [{Ti(Cp′)2}2{μ‐1,n‐(O2C)2C6H4}] (n = 2, 8a / b ; n = 3, 9a / b ; n = 4, 10a / b ). All complexes were fully characterized analytically and spectroscopically. Furthermore, complexes 7 , 8b , 9a ·THF, 10a / b were also be characterized by single‐crystal X‐ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号