首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As intelligent materials responsive to light, photomechanical hydrogels not only possess high-water content, excellent softness and biocompatibility, but also can accomplish various mechanical motions upon spatiotemporal stimulation of external light, which exhibit great potential in biomedical and underwater bionic fields. Molecular photoswitches have been used broadly in preparation of photomechanical hydrogels owing to their high photosensitivity and reversible molecular structure transformations induced by light. Herein, the current progress of photomechanical hydrogels based on typical molecular photoswitches such as spiropyran, azobenzene, and hexaarylbiimidazole (HABI) are introduced. Especially, as a promising building unit for photomechanical hydrogels, HABI has been highlighted due to the unique molecular structures and reversible photoswitching capability. HABI-derived polymer hydrogels demonstrate flexible mechanical behaviors upon localized light irradiation. The characteristics and challenges of photomechanical hydrogels based on molecular photoswitches are also prospected.  相似文献   

2.
Molecular crystals with the ability to transform light energy into macroscopic mechanical motions are a promising class of materials with potential applications in actuating and photonic devices. In regard to such materials, coordination polymers that exhibit dynamic photomechanical motion, associated with a phase transition, are unknown. Herein, we report an intriguing photoactive, one-dimensional ZnII coordination polymer, 1 , derived from 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene and 3,5-difluorobenzoate. Single crystals of 1 under UV light irradiation exhibit rapid shrinking and bending, violent bursting-jumping, splitting, and cracking behavior. Single-crystal X-ray diffraction analysis and 1H NMR spectroscopy reveal an unusual photoinduced phase transition involving a single-crystal-to-single-crystal [2+2] cycloaddition reaction that results in photomechanical responses. Interestingly, crystals of 1 , which are triclinic with space group , are transformed into a higher symmetry, monoclinic cell with space group C2/c. This process represents a rare example of symmetry enhancement upon photoirradiation. The photomechanical activity is likely due to the sudden release of stress associated with strained molecular geometries and significant solid-state molecular movement arising from cleavage and formation of chemical bonds. A composite membrane fabricated from 1 and polyvinyl alcohol (PVA) also displays interesting photomechanical behavior under UV light illumination, indicating the material's potential as a photoactuator.  相似文献   

3.
Light is a readily available and sustainable energy source. Transduction of light into mechanical work or electricity in functional materials, composites, or systems has other potential advantages derived from the ability to remotely, spatially, and temporally control triggering by light. Toward this end, this work examines photoinduced piezoelectric (photopiezoelectric) effects in laminate composites prepared from photoresponsive polymeric materials and the piezoelectric polymer polyvinylidene fluoride (PVDF). In the geometry studied here, photopiezoelectric conversion is shown to strongly depend on the photomechanical properties inherent to the azobenzene‐functionalized polyimides. Based on prior examinations of photomechanical effects in azobenzene‐functionalized polyimides, this investigation focuses on amorphous materials and systematically varies the concentration of azobenzene in the copolymers. The baseline photomechanical response of the set of polyimides is characterized in cantilever deflection experiments. To improve the photomechanical response of the materials and enhance the electrical conversion, the polyimides are drawn to increase the magnitude of the deflection as well as photogenerated stress. In laminate composites, the photomechanical response of the materials in sequenced light exposure is shown to transduce light energy into electrical energy. The frequency of the photopiezoelectric response of the composite can match the frequency of the sequenced light exposing the films.

  相似文献   


4.
Artificial muscles triggered by light are of great importance, especially for the development of non‐contact and remotely controlled materials. Common materials for synthesis of photoinduced artificial muscles typically rely on polymer‐based photomechanical materials. Herein, we are able to prepare artificial muscles using a mixed‐matrix membrane strategy to incorporate photomechanical molecular crystals with connective polymers (e.g. PVDF). The formed hybrid materials inherit not only the advantages of the photomechanical crystals, including faster light response, higher Young's modulus and ordered structure, but also the elastomer properties from polymers. This new type of artificial muscles demonstrates various muscle movements, including lifting objects, grasping objects, crawling and swimming, triggered by light irradiation. These results open a new direction to prepare light‐driven artificial muscles based on molecular crystals.  相似文献   

5.
An understanding of solid‐state crystal dynamics or flexibility in metal–organic frameworks (MOFs) showing multiple structural changes is highly demanding for the design of materials with potential applications in sensing and recognition. However, entangled MOFs showing such flexible behavior pose a great challenge in terms of extracting information on their dynamics because of their poor single‐crystallinity. In this article, detailed experimental studies on a twofold entangled MOF ( f‐MOF‐1) are reported, which unveil its structural response toward external stimuli such as temperature, pressure, and guest molecules. The crystallographic study shows multiple structural changes in f‐MOF‐1 , by which the 3 D net deforms and slides upon guest removal. Two distinct desolvated phases, that is, f‐MOF‐1 a and f‐MOF‐1 b , could be isolated; the former is a metastable one and transformable to the latter phase upon heating. The two phases show different gated CO2 adsorption profiles. DFT‐based calculations provide an insight into the selective and gated adsorption behavior with CO2 of f‐MOF‐1 b . The gate‐opening threshold pressure of CO2 adsorption can be tuned strategically by changing the chemical functionality of the linker from ethanylene (?CH2?CH2?) in f‐MOF‐1 to an azo (?N=N?) functionality in an analogous MOF, f‐MOF‐2 . The modulation of functionality has an indirect influence on the gate‐opening pressure owing to the difference in inter‐net interaction. The framework of f‐MOF‐1 is highly responsive toward CO2 gas molecules, and these results are supported by DFT calculations.  相似文献   

6.
Metal–organic frameworks (MOFs) are promising materials for gas‐separation and air‐filtration applications. However, for these applications, MOF crystallites need to be incorporated in robust and manageable support materials. We used chitin‐based networks from a marine sponge as a non‐toxic, biodegradable, and low‐weight support material for MOF deposition. The structural properties of the material favor predominant nucleation of the MOF crystallites at the inside of the hollow fibers. This composite has a hierarchical pore system with surface areas up to 800 m2 g−1 and pore volumes of 3.6 cm3 g−1, allowing good transport kinetics and a very high loading of the active material. Ammonia break‐through experiments highlight the accessibility of the MOF crystallites and the adsorption potential of the composite indicating their high potential for filtration applications for toxic industrial gases.  相似文献   

7.
《先进技术聚合物》2018,29(2):867-873
The push to advance efficient, renewable, and clean energy sources has brought with it an effort to generate materials that are capable of storing hydrogen. Metal–organic framework materials (MOFs) have been the focus of many such studies as they are categorized for their large internal surface areas. We have addressed one of the major shortcomings of MOFs (their processibility) by creating and 3D printing a composite of acrylonitrile butadiene styrene (ABS) and MOF‐5, a prototypical MOF, which is often used to benchmark H2 uptake capacity of other MOFs. The ABS‐MOF‐5 composites can be printed at MOF‐5 compositions of 10% and below. Other physical and mechanical properties of the polymer (glass transition temperature, stress and strain at the breaking point, and Young's modulus) either remain unchanged or show some degree of hardening due to the interaction between the polymer and the MOF. We do observe some MOF‐5 degradation through the blending process, likely due to the ambient humidity through the purification and solvent casting steps. Even with this degradation, the MOF still retains some of its ability to uptake H2, seen in the ability of the composite to uptake more H2 than the pure polymer. The experiments and results described here represent a significant first step toward 3D printing MOF‐5‐based materials for H2 storage.  相似文献   

8.
Metal–organic framework (MOF) glasses are promising candidates for membrane fabrication due to their significant porosity, the ease of processing, and most notably, the potential to eliminate the grain boundary that is unavoidable for polycrystalline MOF membranes. Herein, we developed a ZIF‐62 MOF glass membrane and exploited its intrinsic gas‐separation properties. The MOF glass membrane was fabricated by melt‐quenching treatment of an in situ solvothermally synthesized polycrystalline ZIF‐62 MOF membrane on a porous ceramic alumina support. The molten ZIF‐62 phase penetrated into the nanopores of the support and eliminated the formation of intercrystalline defects in the resultant glass membrane. The molecular sieving ability of the MOF membrane is remarkably enhanced via vitrification. The separation factors of the MOF glass membrane for H2/CH4, CO2/N2 and CO2/CH4 mixtures are 50.7, 34.5, and 36.6, respectively, far exceeding the Robeson upper bounds.  相似文献   

9.
Photomechanics of liquid-crystalline elastomers and other polymers   总被引:1,自引:0,他引:1  
Muscle is a transducer that can convert chemical energy into mechanical motion. To construct artificial muscles, it is desirable to use soft materials with high mechanical flexibility and durability rather than hard materials such as metals. For effective muscle-like actuation, materials with stratified structures and high molecular orders are necessary. Liquid-crystalline elastomers (LCEs) are superior soft materials that possess both the order of liquid crystals and the elasticity of elastomers (as they contain polymer networks). With the aid of LCEs, it is possible to convert small amounts of external energy into macroscopic amounts of mechanical energy. In this Review, we focus on light as an energy source and describe the recent progress in the area of soft materials that can convert light energy into mechanical energy directly (photomechanical effect), especially the photomechanical effects of LCEs with a view to applications for light-driven LCE actuators.  相似文献   

10.
New materials and chemical knowledge for improved personal protection are among the most pressing needs in the international community. Reported attacks using chemical warfare agents (CWAs,) including organophosphate soman (GD) and thioether mustard gas (HD) are driving research in field-deployable catalytic composites for rapid toxin degradation. In this work, we report simple template-free low temperature synthesis that enables for the first time, a deployable-structured catalytic metal-organic framework/polymer textile composite “MOF-fabric” showing rapid hydrolysis and oxidation of multiple active chemical warfare agents, GD and HD, respectively, and their simulants. Our method yields new zirconium–porphyrin based nano-crystalline PCN-222 MOF-fabrics with adjustable MOF loading and robust mechanical adhesion on low-cost nonwoven polypropylene fibers. Importantly, we describe quantitative kinetic analysis confirming that our MOF-fabrics are as effective as or better than analogous MOF powders for agent degradation, especially for oxidation. Faster oxidation using the MOF-fabrics is ascribed to the composite geometry, where active MOF catalysts are uniformly displayed on the MOF-textile enabling better reactant transport and reactive oxidant generation. Furthermore, we note the discovery of visible photo-activation of GD hydrolysis by a MOF-fabric, which is ascribed to oxidation at the active metal node site, significantly increasing the rate over that observed without illumination. These results provide important new insights into the design of future materials and chemical systems to protect military, first-responders, and civilians upon exposure to complex chemical toxins.  相似文献   

11.
A composite of the metal–organic framework (MOF) NH2‐MIL‐125(Ti) and molecular and ionic nickel(II) species, catalyzed hydrogen evolution from water under UV light. In 95 v/v % aqueous conditions the composite produced hydrogen in quantities two orders of magnitude higher than that of the virgin framework and an order of magnitude greater than that of the molecular catalyst. In a 2 v/v % water and acetonitrile mixture, the composite demonstrated a TOF of 28 mol H2 g(Ni)?1 h?1 and remained active for up to 50 h, sustaining catalysis for three times longer and yielding 20‐fold the amount of hydrogen. Appraisal of physical mixtures of the MOF and each of the nickel species under identical photocatalytic conditions suggest that similar surface localized light sensitization and proton reduction processes operate in the composite catalyst. Both nickel species contribute to catalytic conversion, although different activation behaviors are observed.  相似文献   

12.
The incorporation of metal–organic frameworks (MOFs) into membrane‐shaped architectures is of great importance for practical applications. The currently synthesized MOF‐based membranes show many disadvantages, such as poor compatibility, low dispersity, and instability, which severely limit their utility. Herein, we present a general, facile, and robust approach for the synthesis of MOF‐based composite membranes through the in situ growth of MOF plates in the channels of anodized aluminum oxide (AAO) membranes. After being used as catalysis reactors, they exhibit high catalytic performance and stability in the Knoevenagel condensation reaction. The high catalytic performance might be attributed to the intrinsic structure of MOF‐based composite membranes, which can remove the products from the reaction zone quickly, and prevent the aggregation and loss of catalysts during reaction and recycling process.  相似文献   

13.
Flexible crystals that can capture solar energy and convert it into mechanical energy are promising for a wide range of applications such as information storage and actuators, but obtaining them remains a challenge. Herein, an elastic crystal of a barbiturate derivative was found to be an excellent candidate, demonstrating plastic bending behavior under natural sunlight irradiation. 1H NMR and high-resolution mass spectrum data of microcrystals before and after light irradiation demonstrated that light-induced [2+2] cycloaddition was the driving force for the photomechanical effects. Interestingly, the crystals retained elastic bending even after light irradiation. This is the first report of flexible crystals that can be driven by natural sunlight and that have both photomechanical properties and elasticity. Furthermore, regulation of the passive light output direction of the crystals and transport of objects by applying mechanical forces and light was demonstrated.  相似文献   

14.
Derived from a strategically chosen hexafluorinated dicarboxylate linker aimed at the designed synthesis of a superhydrophobic metal–organic framework (MOF), the fluorine‐rich nanospace of a water‐stable MOF ( UHMOF‐100 ) exhibits excellent water‐repellent features. It registered the highest water contact angle (≈176°) in the MOF domain, marking the first example of an ultrahydrophobic MOF. Various experimental and theoretical studies reinforce its distinctive water‐repellent characteristics, and the conjugation of superoleophilicity and unparalleled hydrophobicity of a MOF material has been coherently exploited to achieve real‐time oil/water separation in recyclable membrane form, with significant absorption capacity performance. This is also the first report of an oil/water separating fluorinated ultrahydrophobic MOF‐based membrane material, with potential promise for tackling marine oil spillages.  相似文献   

15.
A two‐component core–shell UiO‐68 type metal–organic framework (MOF) with a nonfunctionalized interior for efficient guest uptake and storage and a thin light‐responsive outer shell was prepared by initial solvothermal MOF synthesis followed by solvent‐assisted linker exchange. The bulky shell linker features two tetra‐ortho‐fluorinated azobenzene moieties to exploit their advantageous photoisomerization properties. The obtained perfect octahedral MOF single crystals can be switched repeatedly and with an unprecedented efficiency between E‐ and Z‐rich states using visible light only. Due to the high photoswitch density per pore of the shell layer, its steric demand and thus molecular uptake (and release) can be conveniently modulated upon green and blue light irradiation. Therefore, the “smart” shell acts as a light‐controlled kinetic barrier or “gate” for the diffusion of cargo molecules in and out of the MOF crystals.  相似文献   

16.
Transforming molecular motions into the macroscopic scale is a topic of great interest to nanoscience. The photomechanical effect is a promising strategy to achieve this goal. Herein, we report an intriguing photomechanical luminescence driven by the photodimerization of 2‐phenylbenzo[b]thiophene 1,1‐dioxide (P‐BTO) in molecular crystals and elucidate the working mechanism and substituent effect through crystallographic analysis and theoretical calculations. Striking splitting, hopping, and bending mechanical behaviors accompanied by a significant blue fluorescence enhancement are observed for P‐BTO crystals under UV light, which is attributed to the formation of photodimer 2P‐BTO. Although 2P‐BTO is poorly π‐conjugated because of the central cyclobutane ring, it exhibits prominent through‐space conjugation and aggregation‐induced emission (AIE), affording strong solid‐state blue fluorescence at 415 nm with an excellent quantum yield of up to 96.2 %.  相似文献   

17.
The photoinduced dynamic behavior of flexible materials has received considerable attention for potential applications, such as in data storage or as smart optical devices and molecular mechanical actuators. Until now, precisely controlling expansion and contraction with light has remained a challenge. Unraveling the detailed mechanisms of photoinduced structural transformations remains a critical step necessary to understand the molecular architecture necessary for the design of sensitive photomechanical actuators. Herein, a two-dimensional flexible metal–organic framework [Zn2(bdc)2(3-CH3-spy)2]⋅H2O ( Zn2-1 ; H2bdc=1,4-benzenedicaboxylic acid; 3-CH3-spy=3-methylstyrylpyridine) with a positive volumetric thermal expansion coefficient of +78.78×10−6 K−1 is reported. Upon light irradiation at different wavelengths, the MOF underwent a [2+2] cycloaddition, which afforded a family of isomeric, three-dimensional MOFs ( Zn2-2 n , n=a–d) in a single-crystal-to-single-crystal (SCSC) manner. An unprecedented phenomenon, that is, photoinduced nonlinear contraction (PINC), was observed during this conversion. The PINC is caused by conformational changes in the 3-CH3-spy and bdc2− ligands, the bending of metal–ligand bonds, and the local distortion of the paddle-wheel SBUs. The formation of a “wrinkle morphology” on the crystal surface after the photoreaction was observed by AFM. This PINC behavior can broaden the studies on materials expansion and offer a photodriven approach for the future design of supersensitive photomechanical actuators.  相似文献   

18.
Photomechanical molecular crystals are receiving much attention due to their efficient conversion of light into mechanical work and advantages including faster response time; higher Young's modulus; and ordered structure, as measured by single-crystal X-ray diffraction. Recently, various photomechanical crystals with different motions (contraction, expansion, bending, fragmentation, hopping, curling, and twisting) are appearing at the forefront of smart materials research. The photomechanical motions of these single crystals during irradiation are triggered by solid-state photochemical reactions and accompanied by phase transformation. This Minireview summarizes recent developments in growing research into photoresponsive molecular crystals. The basic mechanisms of different kinds of photomechanical materials are described in detail; recent advances in photomechanical crystals for promising applications as smart materials are also highlighted.  相似文献   

19.
A synergistically directed assembly approach to distinctive metal‐organic frameworks utilizing both donor‐acceptor (D‐A) interaction from aromatic systems and coordination interactions is presented. Based on such an approach, the coronene‐tpt (tpt = 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine) stacks based coronene‐MOF‐1 — 4 have been successfully fabricated. Their structural discrepancies with coronene‐ absent control products, 1′ — 4′ , illustrate clearly the significance of coronene‐tpt based D‐A interactions in these architectures. All these coronene‐MOFs contain varied coronene‐tpt stacks as organic secondary building blocks (SBUs), which are closely interrelated with the coordination based framework structures. Moreover, porous coronene‐MOF‐1 and ‐2 exhibit high physicochemical stability and significant light hydrocarbons storage and separation performances.  相似文献   

20.
In the present study, the synthesis of mordenite zeolite/MIL‐101(Cr) metal–organic framework (MOF) composite [MOR/MIL‐101(Cr)] using the ship in a bottle method was suggested. The properties of prepared composite and individual MOF and MOR zeolite were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption measurement, and thermogravimetric analysis (TGA). The XRD results indicated diffraction peaks for each compound (MOR and MOF) in composite. The SEM and TEM images showed the formation of plates MOR (with size of 2.5 × 3 μm) along with spherical particles MIL‐101. The Brunauer–Emmett–Teller results showed that the surface area of the composite was smaller than individual MOF and MOR zeolite. Based on TGA plots, the hybrid zeolite/MOF composite was more thermally stable compared with the isolated MIL‐101(Cr). The composite was functionalized by post‐synthetic modification to obtain acid–base bifunctionality (H‐MOR/MIL‐101‐ED) for the synthesis of chromene derivatives. The acidity from framework Al‐O(H)‐Si sites in MOR and basicity from amine groups in MIL‐101 were obtained by post‐synthetic modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号