首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a new semi‐quantum key distribution protocol, allowing two “classical” participants without sophisticated quantum capability to establish a shared secret key under an untrusted third party (a quantum server). The proposed protocol is free from several well‐known attacks. Furthermore, the efficiency is better than the existing three‐party SQKD protocol in which the classical participants must have the quantum measurement capability.  相似文献   

2.
A new mediated semi‐quantum key distribution (SQKD) protocol is proposed, allowing two classical participants to share a secret key with the help of an untrusted third party, who only needs to generate single photons and perform Bell measurements. This is the first work attempting to reduce the quantum overhead of the untrusted third party, which makes the mediated SQKD even more practical. The proposed protocol is shown to be free from several well‐known attacks.  相似文献   

3.
4.
A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed.In the proposed scheme,communicators share key information by exchanging one travelling photon with two random and secret polarization angles.The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.  相似文献   

5.
6.
A continuous variable ping-pong scheme, which is utilized to generate deterministic private key, is proposed. The proposed scheme is implemented physically by using Gaussian-modulated squeezed states. The deterministic characteristic, i.e., no basis reconciliation between two parties, leads a nearly two-time efficiency comparing to the standard quantum key distribution schemes. Especially, the separate control mode does not need in the
proposed scheme so that it is simpler and more available than previous ping-pong schemes. The attacker may be detected easily through the fidelity of the transmitted signal, and may not be successful in the beam splitter attack strategy.  相似文献   

7.
8.
We propose a new counterfactual quantum cryptography protocol concerning about distributing a deterministic key.By adding a controlled blocking operation module to the original protocol [T.G.Noh,Phys.Rev.Lett.103(2009) 230501],the correlation between the polarizations of the two parties,Alice and Bob,is extended,therefore,one can distribute both deterministic keys and random ones using our protocol.We have also given a simple proof of the security of our protocol using the technique we ever applied to the original protocol.Most importantly,our analysis produces a bound tighter than the existing ones.  相似文献   

9.
Quantum Key Distribution Using Four-Qubit W State   总被引:3,自引:0,他引:3  
A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.  相似文献   

10.
A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.  相似文献   

11.
Oneofthemostintriguingandexcitingrecentdevelopmentsinquantummechanicsisthepredictionanddemonstrationofacryptographickeydistri...  相似文献   

12.
Although the unconditional security of quantum key distribution (QKD) has been widely studied, the imperfections of the practical devices leave potential loopholes for Eve to spy the final key. Thus, how to evaluate the security of QKD with realistic devices is always an interesting and opening question. In this paper, we briefly review the development of quantum hacking and security evaluation technology for a practical decoy state BB84 QKD system. The security requirement and parameters in each module (source, encoder, decoder and detector) are discussed, and the relationship between quantum hacking and security parameter are also shown.  相似文献   

13.
Quantum key distribution (QKD) can provide point-to-point information-theoretic secure key services for two connected users. In fact, the development of QKD networks needs more focus from the scientific community in order to broaden the service scale of QKD technology to deliver end-to-end secure key services. Of course, some recent efforts have been made to develop secure communication protocols based on QKD. However, due to the limited key generation capability of QKD devices, high quantum secure key utilization is the major concern for QKD networks. Since traditional routing techniques do not account for the state of quantum secure keys on links, applying them in QKD networks directly will result in underutilization of quantum secure keys. Therefore, an efficient routing protocol for QKD networks, especially for large-scale QKD networks, is desperately needed. In this study, an efficient routing protocol based on optimized link-state routing, namely QOLSR, is proposed for QKD networks. QOLSR considerably improves quantum key utilization in QKD networks through link-state awareness and path optimization. Simulation results demonstrate the validity and efficiency of the proposed QOLSR routing protocol. Most importantly, with the growth of communication traffic, the benefit becomes even more apparent.  相似文献   

14.
GAO Gan 《理论物理通讯》2009,51(5):820-822
Based on entanglement swapping, a quantum key distribution (QKD) scheme is proposed. In this scheme, the secret keys are formed by comparing initial Bell states and outcomes of entanglement swapping. Moreover, all initial Bell states prepared by Alice and Bob are completely arbitrary. As the classical information exchanged between two parties is very little, this QKD scheme has a high efficiency. In addition, in order to prevent eavesdropping, decoy particles are used.  相似文献   

15.
Quantum Key Distribution Scheme Based on Dense Encoding in Entangled States   总被引:1,自引:0,他引:1  
A quantum key distribution protocol, based on the quantum dense encoding in entangled states, is presented. In this protocol, we introduce an encoding process to encode two classical bits information into one of the four one-qubit unitary operations implemented by Alice and the Bell states measurement implemented by Bob in stead of direct measuring the previously shared Einstein-Podolsky-Rosen pairs by both of the distant parties, Alice and Bob. Considering the practical application we can get the conclusion that our protocol has some advantages. It not only simplifies the measurement which may induce potential errors, but also improves the effectively transmitted rate of the generated qubits by the raw key. Here we also discuss eavesdropping attacks against the scheme and the channel loss.  相似文献   

16.
In quantum key distribution (QKD), there are some security loopholes opened by the gaps between the theoretical model and the practical system, and they may be exploited by eavesdroppers (Eve) to obtain secret key information without being detected. This is an effective quantum hacking strategy that seriously threatens the security of practical QKD systems. In this paper, we propose a new quantum hacking attack on an integrated silicon photonic continuous-variable quantum key distribution (CVQKD) system, which is known as a power analysis attack. This attack can be implemented by analyzing the power originating from the integrated electrical control circuit in state preparation with the help of machine learning, where the state preparation is assumed to be perfect in initial security proofs. Specifically, we describe a possible power model and show a complete attack based on a support vector regression (SVR) algorithm. The simulation results show that the secret key information decreases with the increase of the accuracy of the attack, especially in a situation with less excess noise. In particular, Eve does not have to intrude into the transmitter chip (Alice), and may perform a similar attack in practical chip-based discrete-variable quantum key distribution (DVQKD) systems. To resist this attack, the electrical control circuit should be improved to randomize the corresponding power. In addition, the power can be reduced by utilizing the dynamic voltage and frequency scaling (DVFS) technology.  相似文献   

17.
Time‐bin encoding is an attractive method for transmitting photonic qubits over long distances with minimal decoherence. It allows a simple receiver for quantum key distribution (QKD) that extracts a key by measuring time of arrival of photons and detects eavesdropping by measuring interference of pulses in different time bins. In the past, coherent pulses have been generated using a CW laser and an intensity modulator. A greatly simplified transmitter is proposed and demonstrated here that works by directly modulating the laser diode. Coherence between pulses is maintained by a weak seed laser. The modulator‐free source creates time‐bin encoded pulses with a high extinction ratio (29.4 dB) and an interference visibility above 97 %. The resulting QKD transmitter gives estimated secure key rates up to 4.57 Mbit/s, the highest yet reported for coherent‐one‐way QKD, and can be programmed for all protocols using weak coherent pulses.  相似文献   

18.
Measurement-device-independent quantum key distribution (MDI-QKD) protocol has high practical value. Satellite-based links are useful to build long-distance quantum communication network. The model of satellite-based links for MDI-QKD was proposed but it lacks practicality. This work further analyzes the performance of it. First, MDI-QKD and satellite-based links model are introduced. Then considering the operation of the satellite the performance of their combination is studied under different weather conditions. The results may provide important references for combination of optical-fiber-based links on the ground and satellite-based links in space, which is helpful for large-scale quantum communication network.  相似文献   

19.
独立推导预报单光子源诱骗态量子密钥分发的密钥产生率计算公式,讨论密钥产生率和发送端探测效率的关系;进行弱相干光和预报单光子源诱骗态量子密钥分发的最优强度估计和密钥产生率数值计算.结果表明,预报单光子源诱骗态量子密钥分发的密钥产生率随着发送端探测效率的增加而增加,其安全通信距离与完美单光子源的通信距离一致;诱骗态量子密钥分发可提高安全通信距离和密钥产生率;预报单光子源由于减少了暗计数的影响,进一步提高了安全通信距离.  相似文献   

20.
A new quantum communication scheme based on entanglement swapping is presented. Simplified calculation symbols are adopted to realize the process. Quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. Two legitimate communicators can secretly share four certain key bits and four random key bits via three EPR pairs (quantum channels).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号