首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

2.
The deployment of high‐energy‐density lithium‐metal batteries has been greatly impeded by Li dendrite growth and safety concerns originating from flammable liquid electrolytes. Herein, we report a stable quasi‐solid‐state Li metal battery with a deep eutectic solvent (DES)‐based self‐healing polymer (DSP) electrolyte. This electrolyte was fabricated in a facile manner by in situ copolymerization of 2‐(3‐(6‐methyl‐4‐oxo‐1,4‐dihydropyrimidin‐2‐yl)ureido)ethyl methacrylate (UPyMA) and pentaerythritol tetraacrylate (PETEA) monomers in a DES‐based electrolyte containing fluoroethylene carbonate (FEC) as an additive. The well‐designed DSP electrolyte simultaneously possesses non‐flammability, high ionic conductivity and electrochemical stability, and dendrite‐free Li plating. When applied in Li metal batteries with a LiMn2O4 cathode, the DSP electrolyte effectively suppressed manganese dissolution from the cathode and enabled high‐capacity and a long lifespan at room and elevated temperatures.  相似文献   

3.
Guiding the lithium ion (Li‐ion) transport for homogeneous, dispersive distribution is crucial for dendrite‐free Li anodes with high current density and long‐term cyclability, but remains challenging for the unavailable well‐designed nanostructures. Herein, we propose a two‐dimensional (2D) heterostructure composed of defective graphene oxide (GO) clipped on mesoporous polypyrrole (mPPy) as a dual‐functional Li‐ion redistributor to regulate the stepwise Li‐ion distribution and Li deposition for extremely stable, dendrite‐free Li anodes. Owing to the synergy between the Li‐ion transport nanochannels of mPPy and the Li‐ion nanosieves of defective GO, the 2D mPPy‐GO heterostructure achieves ultralong cycling stability (1000 cycles), even tests at 0 and 50 °C, and an ultralow overpotential of 70 mV at a high current density of 10.0 mA cm?2, outperforming most reported Li anodes. Furthermore, mPPy‐GO‐Li/LiCoO2 full batteries demonstrate remarkably enhanced performance with a capacity retention of >90 % after 450 cycles. Therefore, this work opens many opportunities for creating 2D heterostructures for high‐energy‐density Li metal batteries.  相似文献   

4.
Constructing a solid electrolyte interface (SEI) is a highly effective approach to overcome the poor reversibility of lithium (Li) metal anodes. Herein, an adhesive and self‐healable supramolecular copolymer, comprising of pendant poly(ethylene oxide) (PEO) segments and ureido‐pyrimidinone (UPy) quadruple‐hydrogen‐bonding moieties, is developed as a protection layer of Li anode by a simple drop‐coating. The protection performance of in‐situ‐formed LiPEO–UPy SEI layer is significantly enhanced owing to the strong binding and improved stability arising from a spontaneous reaction between UPy groups and Li metal. An ultrathin (approximately 70 nm) LiPEO–UPy layer can contribute to stable and dendrite‐free cycling at a high areal capacity of 10 mAh cm?2 at 5 mA cm?2 for 1000 h. This coating together with the promising electrochemical performance offers a new strategy for the development of dendrite‐free metal anodes.  相似文献   

5.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

6.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li‐S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li‐S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm?2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm?2) with a low electrolyte/sulfur ratio (10 μL mg?1). This research further demonstrates a durable Li‐Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   

7.
Lithium (Li) dendrite formation is one of the major hurdles limiting the development of Li‐metal batteries, including Li‐O2 batteries. Herein, we report the first observation of the dendrite‐free epitaxial growth of a Li metal up to 10‐μm thick during charging (plating) in the LiBr‐LiNO3 dual anion electrolyte under O2 atmosphere. This phenomenon is due to the formation of an ultrathin and homogeneous Li2O‐rich solid‐electrolyte interphase (SEI) layer in the preceding discharge (stripping) process, where the corrosive nature of Br? seems to give rise to remove the original incompact passivation layer and NO3? oxidizes (passivates) the freshly formed Li surface to prevent further reactions with the electrolyte. Such reactions keep the SEI thin (<100 nm) and facilitates the electropolishing effect and gets ready for the epitaxial electroplating of Li in the following charge process.  相似文献   

8.
Solid‐oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air as H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell with a solid–electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, with a lithium‐ion conductivity of σLi=4.8×10?4 S cm?1 at 25 °C that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+‐conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low‐impedance dendrite‐free plating/stripping of a lithium anode. It is also stable upon contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all‐solid‐state Li/LiFePO4 cell, a Li‐S cell with a polymer‐gel cathode, and a supercapacitor.  相似文献   

9.
Of the various beyond‐lithium‐ion battery technologies, lithium–sulfur (Li–S) batteries have an appealing theoretical energy density and are being intensely investigated as next‐generation rechargeable lithium‐metal batteries. However, the stability of the lithium‐metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long‐term stability of Li–S batteries. Herein, we report lithium azide (LiN3) as a novel electrolyte additive for all‐solid‐state Li–S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state‐of‐the‐art additive lithium nitrate (LiNO3).  相似文献   

10.
Safety concerns pose a significant challenge for the large‐scale employment of lithium–sulfur batteries. Extremely flammable conventional electrolytes and dendritic lithium deposition cause severe safety issues. Now, an intrinsic flame‐retardant (IFR) electrolyte is presented consisting of 1.1 m lithium bis(fluorosulfonyl)imide in a solvent mixture of flame‐retardant triethyl phosphate and high flashpoint solvent 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl (1:3, v/v) for safe lithium–sulfur (Li?S) batteries. This electrolyte exhibits favorable flame‐retardant properties and high reversibility of the lithium metal anode (Coulombic efficiency >99 %). This IFR electrolyte enables stable lithium plating/stripping behavior with micro‐sized and dense‐packing lithium deposition at high temperatures. When coupled with a sulfurized pyrolyzed poly(acrylonitrile) cathode, Li?S batteries deliver a high composite capacity (840.1 mAh g?1) and high sulfur utilization of 95.6 %.  相似文献   

11.
It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density Li‐metal based batteries. Herein, we explored the temperature‐dependent Li nucleation and growth behavior and constructed a dendrite‐free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li‐ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite‐free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C.  相似文献   

12.
Solid‐state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next generation Li‐ion batteries for better safety and stability. Of various types of solid electrolytes, composite polymer electrolytes exhibit acceptable Li‐ion conductivity due to the interaction between nanofillers and polymer. Nevertheless, the agglomeration of nanofillers at high concentration has been a major obstacle for improving Li‐ion conductivity. In this study, we designed a three‐dimensional (3D) nanostructured hydrogel‐derived Li0.35La0.55TiO3 (LLTO) framework, which was used as a 3D nanofiller for high‐performance composite polymer Li‐ion electrolyte. The systematic percolation study revealed that the pre‐percolating structure of LLTO framework improved Li‐ion conductivity to 8.8×10?5 S cm?1 at room temperature.  相似文献   

13.
Inducing uniform deposition of lithium from the stage of metal crystallization nucleation is of vital importance to achieve dendrite‐free lithium anodes. Herein, using experiments and simulation, homogenization of Li nucleation and normalization of Li growth can be achieved on PNIPAM polymer brushes with lithiophilic functional groups modified Cu substrates. The lithiophilic functional groups of amide O can homogenize ion mass transfer and induce the uniform distribution of Li nucleation sites. What is more, the ultra‐small space between each brush can act as the channels for Li transportation and normalization growth. Owing to the synergistic effect of homogenization and normalization of electrodeposited Li, the obtained planar columnar Li anode exhibits excellent cycle stability at an ultra‐high current density of 20 mA cm?2.  相似文献   

14.
It is a very urgent and important task to improve the safety and high‐temperature performance of lithium/lithium‐ion batteries (LIBs). Here, a novel ionic liquid, 1‐(2‐ethoxyethyl)‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR1(2o2)TFSI), was designed and synthesized, and then mixed with dimethyl carbonate (DMC) as appropriate solvent and LiTFSI lithium salt to produce an electrolyte with high ionic conductivity for safe LIBs. Various characterizations and tests show that the highly flexible ether group could markedly reduce the viscosity and provide coordination sites for Li‐ion, and the DMC could reduce the viscosity and effectively enhance the Li‐ion transport rate and transference number. The electrolyte exhibits excellent electrochemical performance in Li/LiFeO4 cells at room temperature as well as at a high temperature of 60 °C. More importantly, with the addition of DMC, the IL‐based electrolyte remains nonflammable and appropriate DMC can effectively inhibit the growth of lithium dendrites. Our present work may provide an attractive and promising strategy for high performance and safety of both lithium and lithium‐ion batteries.  相似文献   

15.
The anion chemistry of lithium salts plays a pivotal role in dictating the physicochemical and electrochemical performance of solid polymer electrolytes (SPEs), thus affecting the cyclability of all‐solid‐state lithium metal batteries (ASSLMBs). The bis(trifluoromethanesulfonyl)imide anion (TFSI?) has long been studied as the most promising candidate for SPEs; however, the Li‐ion conductivities of the TFSI‐based SPEs still remain low (Li‐ion transference number: ca. 0.2). In this work, we report new hydrogen‐containing anions, conceived based on theoretical considerations, as an electrolyte salt for SPEs. SPEs comprising hydrogen‐containing anions achieve higher Li‐ion conductivities than TFSI‐based ones, and those anions are electrochemically stable for various kinds of ASSLMBs (Li–LiFePO4, Li–S, and Li–O2 batteries). This opens up a new avenue for designing safe and high‐performance ASSLMBs in the future.  相似文献   

16.
The dendritic growth of Li metal leads to electrode degradation and safety concerns, impeding its application in building high energy density batteries. Forming a protective layer on the Li surface that is electron‐insulating, ion‐conducting, and maintains an intimate interface is critical. We herein demonstrate that Li plating is stabilized by a biphasic surface layer composed of a lithium‐indium alloy and a lithium halide, formed in situ by the reaction of an electrolyte additive with Li metal. This stabilization is attributed to the fast lithium migration though the alloy bulk and lithium halide surface, which is enabled by the electric field across the layer that is established owing to the electron‐insulating halide phase. A greatly stabilized Li‐electrolyte interface and dendrite‐free plating over 400 hours in Li|Li symmetric cells using an alkyl carbonate electrolyte is demonstrated. High energy efficiency operation of the Li4Ti5O12 (LTO)|Li cell over 1000 cycles is achieved.  相似文献   

17.
A new method to prepare the polymer electrolytes for lithium‐ion batteries is proposed. The polymer electrolytes were prepared by reacting poly(phosphazene)s (MEEPP) having 2‐(2‐methoxyethoxy)ethoxy and 2‐(phenoxy)ethoxy units with 2,4,6‐tris[bis(methoxymethyl)amino]‐1,3,5‐triazine (CYMEL) as a cross‐linking agent. This method is simple and reliable for controlling the cross‐linking extent, thereby providing a straightforward way to produce a flexible polymer electrolyte membrane. The 6 mol % cross‐linked polymer electrolyte (ethylene oxide unit (EO)/Li = 24:1) exhibited a maximum ionic conductivity of 5.36 × 10?5 S cm?1 at 100 °C. The 7Li linewidths of solid‐state static NMR showed that the ionic conductivity was strongly related to polymer segment motion. Moreover, the electrochemical stability of the MEEPP polymer electrolytes increased with an increasing extent of cross‐linking, the highest oxidation voltage of which reached as high as 7.0 V. Moreover, phenoxy‐containing polyphosphazenes are very useful model polymers to study the relationship between the polymer flexibility; that is, the cross‐linking extent and the mobility of metal ions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 352–358  相似文献   

18.
A new super‐concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra‐high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li‐ion cell based on LiMn2O4 and carbon‐coated TiO2 delivered the unprecedented energy density of 100 Wh kg?1 for rechargeable aqueous Li‐ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the “water‐in‐salt” electrolyte further pushed the energy densities of aqueous Li‐ion cells closer to those of the state‐of‐the‐art Li‐ion batteries.  相似文献   

19.
Garnet‐type electrolytes suffer from unstable chemistry against air exposure, which generates contaminants on electrolyte surface and accounts for poor interfacial contact with the Li metal. Thermal treatment of the garnet at >700 °C could remove the surface contaminants, yet it regenerates the contaminants in the air, and aggravates the Li dendrite issue as more electron‐conducting defective sites are exposed. In a departure from the removal approach, here we report a new surface chemistry that converts the contaminants into a fluorinated interface at moderate temperature <180 °C. The modified interface shows a high electron tunneling barrier and a low energy barrier for Li+ surface diffusion, so that it enables dendrite‐proof Li plating/stripping at a high critical current density of 1.4 mA cm?2. Moreover, the modified interface exhibits high chemical and electrochemical stability against air exposure, which prevents regeneration of contaminants and keeps high critical current density of 1.1 mA cm?2. The new chemistry presents a practical solution for realization of high‐energy solid‐state Li metal batteries.  相似文献   

20.
In this study, a novel ion conductive polyimide (PI) nanofiber reinforced photocured hybrid electrolyte has been fabricated. Polyimide fibers were fabricated with the reaction between 4,4′‐oxydianiline (ODA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) followed by electrospinning and thermal imidization methods. Then, PI electrospun fibers were dipped into hybrid resin formulation containing bisphenol A ethoxylate dimethacrylate (BEMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA) and 3‐(methacryloyloxy) propyltrimethoxysilane (MEMO) and then photocured to prepare PI nanofiber reinforced electrolyte membrane. Photocured membranes were soaked into lithium hexafluorophosphate (LiPF6) before measuring electrochemical stability and ionic conductivity of hybrid polyelectrolyte. The chemical structure and electrochemical performance of the electrolytes were examined by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and scanning electron microscopy (SEM) analysis. The incorporation of MEMO into organic matrix effectively increased the modulus from 2.83 to 5.91 MPa. The obtained results showed that a suitable electrolyte for Li‐ion batteries with high lithium uptake ratio, high conductivity (7.2 × 10?3 S cm?1) at ambient temperature and wide stability window above 5.5 V had been prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号