首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The two title dinuclear copper(II) complexes, [Cu2Cl4(C17H20Cl2N2)2], (I), and [Cu2Cl4(C19H22N2O4)2], (II), have similar coordination environments. In each complex, the asymmetric unit consists of one half‐molecule and the two copper centres are bridged by a pair of Cl atoms, resulting in complexes with centrosymmetric structures containing Cu(μ‐Cl)2Cu parallelogram cores; the Cu...Cu separations and Cu—Cl—Cu angles are 3.4285 (8) Å and 83.36 (3)°, respectively, for (I), and 3.565 (2) Å and 84.39 (7)° for (II). Each Cu atom is five‐coordinated and the coordination geometry around the Cu atom is best described as a distorted square‐pyramid with a τ value of 0.155 (3) for (I) and 0.092 (7) for (II). The apical Cu—Cl bond length is 2.852 (1) Å for (I) and 2.971 (2) Å for (II). The basal Cu—Cl and Cu—N average bonds lengths are 2.2673 (9) and 2.030 (2) Å, respectively, for (I), and 2.280 (2) and 2.038 (6) Å for (II). The molecules of (I) are linked by one C—H...Cl hydrogen bond into a complex [10] sheet. The molecules of (II) are linked by one C—H...Cl and one N—H...O hydrogen bond into a complex [100] sheet.  相似文献   

2.
The compound [Cu42‐OH)23‐OH)2Cl2(bipy)4]Cl2 · 6H2O ( 1 ) was obtained by recrystallization of [Cu(HB)2(2, 2′‐bipy)] · H2O (H2B = diphenylglycolic acid) from EtOH/CH2Cl2 and their structure has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as based on a Cu4(OH)4 core with a “stepped cubane” structure. The coordination polyhedron around each copper is a distorted square pyramid. The tetranuclear units are linked in the crystal by C‐H…Cl hydrogen bonds and by π‐π interactions between bipyridine rings. IR data are also presented.  相似文献   

3.
Reduction of 2‐cyanopyridine by sodium in the presence of 3‐hexamethyleneiminylthiosemicarbazide produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim. Complexes with nickel(II), copper(II) and palladium(II) have been prepared and the following complexes structurally characterized: [Ni(Amhexim)OAc], [{Cu(Amhexim)}2C4H4O4]·2DMSO·H2O, [Cu(HAmhexim)Cl2] and [Pd(Amhexim)Cl]. Coordination is via the pyridyl nitrogen, imine nitrogen and thiolato or thione sulfur atom when coordinating as the anionic or neutral ligand, respectively. [{Cu(Amhexim)}2C4H4O4] is a binuclear complex with the two copper(II) ions bridged by the succinato group in [Cu‐(HAmhexim)Cl2] the Cu atom is 5‐coordinate and close to a square pyramid structure and in [Ni(Amhexim)OAc] and [Pd(Amhexim)Cl] the metal atoms are planar, 4‐coordinate.  相似文献   

4.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

5.
Structures having the unusual protonated 4‐arsonoanilinium species, namely in the hydrochloride salt, C6H9AsNO3+·Cl, (I), and the complex salts formed from the reaction of (4‐aminophenyl)arsonic acid (p‐arsanilic acid) with copper(II) sulfate, i.e. hexaaquacopper(II) bis(4‐arsonoanilinium) disulfate dihydrate, (C6H9AsNO3)2[Cu(H2O)6](SO4)2·2H2O, (II), with copper(II) chloride, i.e. poly[bis(4‐arsonoanilinium) [tetra‐μ‐chlorido‐cuprate(II)]], {(C6H9AsNO3)2[CuCl4]}n , (III), and with cadmium chloride, i.e. poly[bis(4‐arsonoanilinium) [tetra‐μ‐chlorido‐cadmate(II)]], {(C6H9AsNO3)2[CdCl4]}n , (IV), have been determined. In (II), the two 4‐arsonoanilinium cations are accompanied by [Cu(H2O)6]2+ cations with sulfate anions. In the isotypic complex salts (III) and (IV), they act as counter‐cations to the {[CuCl4]2−}n or {[CdCl4]2−}n anionic polymer sheets, respectively. In (II), the [Cu(H2O)6]2+ ion sits on a crystallographic centre of symmetry and displays a slightly distorted octahedral coordination geometry. The asymmetric unit for (II) contains, in addition to half the [Cu(H2O)6]2+ ion, one 4‐arsonoanilinium cation, a sulfate dianion and a solvent water molecule. Extensive O—H…O and N—H…O hydrogen bonds link all the species, giving an overall three‐dimensional structure. In (III), four of the chloride ligands are related by inversion [Cu—Cl = 2.2826 (8) and 2.2990 (9) Å], with the other two sites of the tetragonally distorted octahedral CuCl6 unit occupied by symmetry‐generated Cl‐atom donors [Cu—Cl = 2.9833 (9) Å], forming a two‐dimensional coordination polymer network substructure lying parallel to (001). In the crystal, the polymer layers are linked across [001] by a number of bridging hydrogen bonds involving N—H…Cl interactions from head‐to‐head‐linked As—O—H…O 4‐arsonoanilinium cations. A three‐dimensional network structure is formed. CdII compound (IV) is isotypic with CuII complex (III), but with the central CdCl6 complex repeat unit having a more regular M —Cl bond‐length range [2.5232 (12)–2.6931 (10) Å] compared to that in (III). This series of compounds represents the first reported crystal structures having the protonated 4‐arsonoanilinium species.  相似文献   

6.
1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole (hnt), prepared by alkylation of 3‐nitro‐1, 2, 4‐triazole with 2‐chloroethanol, was found to react with copper(II) chloride and copper(II) perchlorate in acetonitrile/ethanol solutions giving complexes [Cu2(hnt)2Cl4(H2O)2] and[Cu(hnt)2(H2O)3](ClO4)2, respectively. They are the first examples of coordination compounds with a neutral N‐substituted 3‐nitro‐1, 2, 4‐triazole ligand. 1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole and the obtained complexes were characterized by NMR and IR spectroscopy, X‐ray, and thermal analyses. [Cu2(hnt)2Cl4(H2O)2] presents a dinuclear chlorido‐bridged complex in which hnt acts as a chelating bidentate ligand, coordinated to the metal by a nitrogen atom of the triazole ring and an oxygen atom of the nitro group, and the copper atoms are inconsiderably distorted octahedral coordination. [Cu(hnt)2(H2O)3](ClO4)2comprises a mononuclear complex cation, in which two nitrogen atoms of two hnt ligands in trans configuration and three water oxygen atoms form a square pyramidal environment around the copper atom, which is completed to an distorted octahedron with a bifurcated vertex due to two additional elongated Cu–O bonds with two nitro groups. In both complexes, Cu–O bonds with the nitro groups may be considered as semi‐coordinated.  相似文献   

7.
Hydrogen Bonds in 1,1‐Bis(2‐hydroxyethyl)‐3‐benzoylthiourea and its Nickel(II)‐ and Copper(II)‐Chelate Complexes The ligand 1,1‐bis(2‐hydroxyethyl)‐3‐benzoylthiourea HL, ( 1 ), yields with nickel(II) and copper(II) ions neutral complexes [NiL2], ( 2 ), and [CuL2], ( 3 ). By X‐ray structure analysis and IR spectroscopy different intramolecular hydrogen bonds (OH…O) and (OH…N) could be identified in both equally coordinated ligands of the [NiL2] molecule. For comparison X‐ray and IR data were also estimated for 1 and 3 .  相似文献   

8.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

9.
合成了两个新的配合物CuLCl2•2EtOH(1) 和CoLCl2 (2) [L是( S , S )-1,2-二N-甲基苯并咪唑-1,2-二甲氧基-乙烷],并通过单晶X衍射确定它们的结构。配合物1中,L作为三齿[N, N, O]配体,而配合物2 中,L作为二齿[N, N]配体。这两个配合物共同的结构特点都是通过分子内氢键形成2维的格子结构,然后通过分子间的C-H···Cl型氢键和π–π堆积作用形成3维结构。  相似文献   

10.
The characterization of the complexes [Cu2(2‐Clnic)4(H2O)2] ( 1 ), [Cu(2,6‐Cl2nic)2(H2O)2] ( 2 ) and [Cu(5‐Brnic)2(H2O)2]n ( 3 ) (where 2‐Clnic = 2‐chloronicotinate, 2,6‐Cl2nic = 2,6‐dichloronicotinate or 5‐Brnic = 5‐bromonicotinate) was based on elemental analysis, IR, electronic and EPR spectra, and magnetic susceptibility. Complex 1 was also studied by X‐ray analysis at 298 1a and 80 K 1b . The complex 1 contains a dinuclear Cu‐acetate molecular structure in which the carboxyl groups of the 2‐chloronicotinate ligands act as bridges and water molecules are at apical positions. The stereochemistry about Cu atom at both temperatures is typical for square pyramidal geometry with CuO4O chromophore. The Cu‐Cu distance is 2.6513(8) and 2.6382(6) Å for 1a and 1b , respectively. The Cu atoms are displaced by 0.2069(9) and 0.1973(7) Å, respectively, from the plane containing four oxygen atoms bonded to the Cu atom toward the apical water molecules. Strong and weak hydrogen bonds as well as C–Cl···π interactions in the crystal structure are discussed as well. Both complexes, monomeric [Cu(2,6‐Cl2nic)2(H2O)2] ( 2 ) and polymeric [Cu(5‐Brnic)2(H2O)2]n ( 3 ), possess octahedral copper(II) stereochemistry with differing tetragonal distortions.  相似文献   

11.
Three new dinuclear Cu(II) complexes with the formulas [Cu2(pxdmbtacn)Cl4] ( 1 ), [Cu2(pxdmbtacn)Cl0.7(NO3)1.3(OH)2(H2O)1.3]?6H2O ( 2 ) and [Cu2(pxdiprbtacn)Cl4] ( 3 ) together with one previously reported complex, [Cu2(pxbtacn)Cl4] ( 4 ), were obtained from Cu(II) salts with three p‐xylylene‐bridged bis‐tacn ligands bearing pendant alkyl substituents or without pendant group. Complex 2 was structurally characterized as a centrosymmetric dinuclear molecule with each metal center being coordinated to some labile ligands in addition to one tacn ring. Based on the results of mass spectrometry and UV–visible spectroscopy, complexes 1 and 3 are capable of existing in aqueous solution as dinuclear species but 4 can partially form a dimer of the original dinuclear motif. Complexes 1 , 3 and 4 can all effectively cleave supercoiled DNA oxidatively in the presence of hydrogen peroxide. The superoxide dismutase (SOD) activities of 1 and 3 measured under physiological conditions are comparable to that of the native CuZnSOD enzyme but the enzymatic activity of 4 is about three‐ to fourfold lower. Furthermore, complexes 1 , 3 and 4 demonstrate moderate scavenging effect on hydrogen peroxide and their catalase activities are in the decreasing order of 3 > 1 > 4 .  相似文献   

12.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

13.
In the title molecular complex, [Cu4Cl6O(2‐EtTz)4], where 2‐EtTz is 2‐ethyl­tetrazole (C3H6N4), the central O atom is located on the symmetry site and is tetrahedrally coordinated to four Cu atoms, with Cu—O distances of 1.8966 (4) Å. A very slight distortion of Cu4O from a regular tetrahedron is observed [two Cu—O—Cu angles are 108.76 (3)° and four others are 109.828 (13)°]. Each Cu atom is connected to three others via the Cl atoms, forming a slightly distorted Cl octahedron around the O atom, with O⋯Cl distances of 2.9265 (7) Å for Cl atoms lying on the twofold axis and 2.9441 (13) Å for those in general positions. The Cu atom has a distorted trigonal–bipyramidal environment, with three Cl atoms in the equatorial plane, and with the N atom of the 2‐ethyl­tetrazole ligand and the μ4‐O atom in axial positions. The Cu atom is displaced out of the equatorial plane by ca 0.91 Å towards the coordinated N atom of the 2‐­ethyl­tetrazole ligand.  相似文献   

14.
The two new title complexes, [Cu(N3)(dpyam)2]PF6 (dpyam is di‐2‐pyridylamine, C10H11N3), (I), and [Cu(N3)(dpyam)2]Cl·4H2O, (II), respectively, have been characterized by single‐crystal X‐ray diffraction. Both complexes display a distorted square‐pyramidal geometry. Each Cu atom is coordinated in the basal plane by three dpyam N atoms and one azide N atom in equatorial positions, and by another N atom from the dpyam group in the apical position. In complex (I), the one‐dimensional supra­molecular architecture is assembled via hydrogen‐bonding inter­actions between the amine N atom and terminal azide N atoms and the F atoms of the PF6 anion. For complex (II), hydrogen‐bonding inter­actions between the amine N atom, the Cl anion and water O atoms result in a two‐dimensional lattice.  相似文献   

15.
The structures of the title compounds, [CuCl(C3H5N3S)4]Cl·H2O, (I), and [CuCl(C4H7N3S)4]Cl, (II), comprise square‐pyramidal Cu centres with four N‐bound organic ligands filling the base positions, a Cl atom in the apical position and a Cl? as a free counter‐ion. The cation and free chloride ion in (II) have fourfold crystallographic symmetry. Hydro­gen‐bonding associations from the 2‐amino H atoms dominate both structures, with the principal acceptors being the chlorides, although in (I), the N4 atoms are also involved. Furthermore, (I) is a hydrate, with the water mol­ecule participating in the hydrogen‐bonding network.  相似文献   

16.
Hydrothermal reactions of tridentate rigid 2,4,6‐tris‐(benzimidazolyl‐2‐yl)pyridine (pytbzim) ligand and Zn(II)/Cd(II) salts generate binuclear complexes {[Cd2Cl2(pytbzim)2(H2O)2]·2NO3}n ( 1 ) and two isomorphs {[M2Cl2(pytbzim)2(H2O)2]Cl2·2H2O}n [M=Cd ( 2 ), Zn ( 3 )]. All complexes include [M2Cl2(pytbzim)2(H2O)2] dimers, which are further connected into a three‐dimensional supramolecular networks through ?‐? stacking interaction and hydrogen bonds. The solid state photoluminescent studies reveal good fluorescent properties of the pytbzim ligand and complexes 1 – 2 at room temperature.  相似文献   

17.
1‐tert‐Butyl‐1H‐1,2,4‐triazole (tbtr) was found to react with copper(II) chloride or bromide to give the complexes [Cu(tbtr)2X2]n and [Cu(tbtr)4X2] (X = Cl, Br). 1‐tert‐Butyl‐1H‐tetrazole (tbtt) reacts with copper(II) bromide resulting in the formation of the complex [Cu3(tbtt)6Br6]. The obtained crystalline complexes as well as free ligand tbtr were characterized by elemental analysis, IR spectroscopy, thermal and X‐ray analyses. For free ligand tbtr, 1H NMR and 13C NMR spectra were also recorded. In all the complexes, tbtr and tbtt act as monodentate ligands coordinated by CuII cations via the heteroring N4 atoms. The triazole complexes [Cu(tbtr)2Cl2]n and [Cu(tbtr)2Br2]n are isotypic, being 1D coordination polymers, formed at the expense of single halide bridges between neighboring copper(II) cations. The isotypic complexes [Cu(tbtr)4Cl2] and [Cu(tbtr)4Br2] reveal mononuclear centrosymmetric structure, with octahedral coordination of CuII cations. The tetrazole compound [Cu3(tbtt)6Br6] is a linear trinuclear complex, in which neighboring copper(II) cations are linked by single bromide bridges.  相似文献   

18.
Four new complexes of [Cu(bpm)(ox)(H2O)] ( 1 ), [Cu(tpd)(dca)(H2O)] ( 2 ), [Cu(bppz)(N3)2] ( 3 ), and [Cu(bpm)21,3‐N3)(N3)] ( 4 ) (bpm = 2,2′‐bipyrimidine, bppz = 2,3‐bis(2‐pyridyl)pyrazine, tpd = 4‐terpyridone, dca = dicyanamide, ox = oxalate) have been prepared and characterized by X‐ray single‐crystal analysis and variable‐temperature magnetic measurements. Compounds 1–4 are essentially mononuclear Cu(II) complexes. However, in complex 1 , Cu(II) it was found that intermolecular hydrogen bonding through between H2O and ox formed 1‐D chain structure. In complex 2 it was found that the hydrogen bonding between H2O and tpd of the next molecule led to for a binuclear Cu(II) complex. In complex 3 , two nitrogen atoms, one of the pyridyl group of bppz and one of N3? ligands, are weakly coordinated to neighbor Cu(II) ion thus leading to formation of a 1‐D chain structure. In complex 4 , one nitrogen atom of terminated N3? is weakly coordinated to the neighbor Cu(II) site to form a 1‐D polymeric structure. The magnetic susceptibility measurements indicate that complex 1 and 4 exhibit a weak antiferromagnetic interaction whereas a ferromagnetic coupling has been established for complexes 2 and 3 .  相似文献   

19.
Because of their versatile coordination modes and strong coordination ability for metals, triazole ligands can provide a wide range of possibilities for the construction of metal–organic frameworks. Three transition‐metal complexes, namely bis(μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato)‐κ3N 2,O :N 13N 1:N 2,O‐bis[triamminenickel(II)] tetrahydrate, [Ni2(C3HN3O2)2(NH3)6]·4H2O, (I), catena‐poly[[[diamminediaquacopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 1:N 4,O‐[diamminecopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 4,O :N 1] dihydrate], {[Cu2(C3HN3O2)2(NH3)4(H2O)2]·2H2O}n , (II), (μ‐5‐amino‐1,2,4‐triazol‐1‐ide‐3‐carboxylato‐κ2N 1:N 2)di‐μ‐hydroxido‐κ4O :O‐bis[triamminecobalt(III)] nitrate hydroxide trihydrate, [Co2(C3H2N4O2)(OH)2(NH3)6](NO3)(OH)·3H2O, (III), with different structural forms have been prepared by the reaction of transition metal salts, i.e. NiCl2, CuCl2 and Co(NO3)2, with 1,2,4‐triazole‐3‐carboxylic acid or 3‐amino‐1,2,4‐triazole‐5‐carboxylic acid hemihydrate in aqueous ammonia at room temperature. Compound (I) is a dinuclear complex. Extensive O—H…O, O—H…N and N—H…O hydrogen bonds and π–π stacking interactions between the centroids of the triazole rings contribute to the formation of the three‐dimensional supramolecular structure. Compound (II) exhibits a one‐dimensional chain structure, with O—H…O hydrogen bonds and weak O—H…N, N—H…O and C—H…O hydrogen bonds linking anions and lattice water molecules into the three‐dimensional supramolecular structure. Compared with compound (I), compound (III) is a structurally different dinuclear complex. Extensive N—H…O, N—H…N, O—H…N and O—H…O hydrogen bonding occurs in the structure, leading to the formation of the three‐dimensional supramolecular structure.  相似文献   

20.
Four bis(pyrazolyl)pyridine Zn(II) and Cu(II) carboxylate complexes have been structurally elucidated and used as initiators in the ring‐opening polymerization (ROP) of ε‐carprolactone (ε‐CL). Reactions of bis(3,5‐dimethyl‐pyrazol‐1‐yl)pyridine ( L1 ) with the appropriate Zn(II) and Cu(II) carboxylates afforded the corresponding complexes; [Zn(L1)(C6H5COO)2] ( 1 ), [Zn(L1)(2‐Cl‐C6H4COO)2] ( 2 ), [Zn(L1)(OAc)2] ( 3 ) and [Cu(L1)(OAc)2] ( 4 ) in moderate to good yields. Molecular structures of compounds 1 , 2 , 3 confirmed the presence of one tridentate bound ligand L1 in the metal coordination sphere and two carboxylate anions to give five coordination number around Zn(II) and Cu(II) atoms. Complexes 1 , 2 , 3 , 4 initiated the ROP of ε‐CL at 110 °C to give polymers of moderate molecular weights. Kinetic analyses of the ROP reactions indicate pseudo ‐first‐order dependency on ε‐CL monomer and initiator. 1H NMR and mass spectral data established a coordination insertion mechanistic pathway and behaviour of 1 , 2 , 3 , 4 as initiators in the ROP of ε‐CL. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号