首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents thioether construction involving alkyl/aryl thiosulfates and diazonium salt catalyzed by visible‐light‐excited [Ru(bpy)3Cl2] at room temperature in 44–86 % yield. Electron paramagnetic resonance studies found that thiosulfate radical formation was promoted by K2CO3. Conversely, radicals generated from BnSH or BnSSBn (Bn=benzyl) were clearly suppressed, demonstrating the special property of thiosulfate in this system. Transient absorption spectra confirmed the electron‐transfer process between [Ru(bpy)3Cl2] and 4‐MeO‐phenyl diazonium salt, which occurred with a rate constant of 1.69×109 M ?1 s?1. The corresponding radical trapping product was confirmed by X‐ray diffraction. The full reaction mechanism was determined together with emission quenching data. Furthermore, this system efficiently avoided the over‐oxidation of sulfide caused by H2O in the photoexcited system containing Ru2+. Both aryl and heteroaryl diazonium salts with various electronic properties were investigated for synthetic compatibility. Both alkyl‐ and aryl‐substituted thiosulfates could be used as substrates. Notably, pharmaceutical derivatives afforded late‐stage sulfuration smoothly under mild conditions.  相似文献   

2.
We report herein that 4‐alkyl‐1,4‐dihydropyridines (alkyl‐DHPs) can directly reach an electronically excited state upon light absorption and trigger the generation of C(sp3)‐centered radicals without the need for an external photocatalyst. Selective excitation with a violet‐light‐emitting diode turns alkyl‐DHPs into strong reducing agents that can activate reagents through single‐electron transfer manifolds while undergoing homolytic cleavage to generate radicals. We used this photochemical dual‐reactivity profile to trigger radical‐based carbon–carbon bond‐forming processes, including nickel‐catalyzed cross‐coupling reactions.  相似文献   

3.
The radical‐scavenging ability of synthesized C4‐phenolic‐substituted 1,4‐dihydropyridines (1,4‐DHPs) toward 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) and alkyl/alkylperoxyl ABAP‐derived radicals at pH 7.4 was assessed by UV–visible spectroscopy. Reactivity of 1,4‐DHPs toward DPPH? was measured by following the decay of the absorption corresponding to the radical λmax at 525 nm, permitting the calculation of EC50, tEC50, and antiradical efficiency values. Pseudo–first‐order kinetic rate constants for the reactivity between the C4‐phenolic‐substituted 1,4‐DHP compounds and alkyl/alkylperoxyl ABAP‐derived radicals were followed by the decrease in λmax at 356 nm corresponding to 1,4‐DHP moiety. C4‐phenolic‐substituted 1,4‐DHPs were more reactive toward alkyl free radicals than the other tested radicals. The 3,4,5‐trihydroxyphenyl‐1,4‐DHP was the most reactive derivative toward this radical with a kinetic rate constant value of 513.2 s?1. Also, this derivative was the most effective toward the DPPH? radical with the lowest EC50 value (5.08 µM). Comparative studies revealed that synthesized 1,4‐DHPs were more reactive than commercial 1,4‐DHPs. The scavenging mechanism involves the contribution of both pharmacophores, that is, hydroxyphenyl and 1,4‐DHP rings, which was supported by the identification of the reaction products. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 810–820, 2012  相似文献   

4.
Electrochemiluminescence (ECL) of tris(2,2′‐bipyridine)ruthenium, Ru(bpy)32+ in the presence of various co‐reactants, such as tripropylamine (TPA), oxalate ion (C2O42?), ascorbic acid (H2A) and dehydroascorbic acid (DHA), were investigated under ultrasound irradiation. In sono‐ECL experiments, an indium‐thin‐oxide (ITO) was used as working electrode, and a titanium tipped sonic horn probe (diameter 2 mm) which operated at a frequency of 20 kHz was set in the front of the ITO electrode. Under the ultrasound irradiation, ECL signals were found to be significantly enhanced when TPA and C2O42? were used as co‐reactants, only slightly enhanced in Ru(bpy)32+/DHA system, but total quenched in Ru(bpy)32+/H2A system. The difference of Ru(bpy)32+ ECL behaviors for various co‐reactant could to be due to the different kinetics of catalytic reactions associated in ECL schemes. ECL quenching effect observed in Ru(bpy)32+/H2A system was suggested to be due to electron transfer (ET) route between the excited state *Ru(bpy)32+ and ascorbate anion HA? diffused from the bulk solution, where the diffusional HA? species served as electron donor. The effect becomes more pronounced upon sonication because the effective collision frequency between *Ru(bpy)32+ and HA? would be significantly increased by the enhanced mass transport effect of ultrasound.  相似文献   

5.
A rare example of a mononuclear complex [(bpy)2Ru(L1?H)](ClO4), 1 (ClO4) and dinuclear complexes [(bpy)2Ru(μ‐L1?2H)Ru(bpy)2](ClO4)2, 2 (ClO4)2, [(bpy)2Ru(μ‐L2?2H)Ru(bpy)2](ClO4)2, 3 (ClO4)2, and [(bpy)2Ru(μ‐L3?2H)Ru(bpy)2](ClO4)2, 4 (ClO4)2 (bpy=2,2′‐bipyridine, L1=2,5‐di‐(isopropyl‐amino)‐1,4‐benzoquinone, L2=2,5‐di‐(benzyl‐amino)‐1,4‐benzoquinone, and L3=2,5‐di‐[2,4,6‐(trimethyl)‐anilino]‐1,4‐benzoquinone) with the symmetrically substituted p‐quinone ligands, L, are reported. Bond‐length analysis within the potentially bridging ligands in both the mono‐ and dinuclear complexes shows a localization of bonds, and binding to the metal centers through a phenolate‐type “O?” and an immine/imminium‐type neutral “N” donor. For the mononuclear complex 1 (ClO4), this facilitates strong intermolecular hydrogen bonding and leads to the imminium‐type character of the noncoordinated nitrogen atom. The dinuclear complexes display two oxidation and several reduction steps in acetonitrile solutions. In contrast, the mononuclear complex 1 + exhibits just one oxidation and several reduction steps. The redox processes of 1 1+ are strongly dependent on the solvent. The one‐electron oxidized forms 2 3+, 3 3+, and 4 3+ of the dinuclear complexes exhibit strong absorptions in the NIR region. Weak NIR absorption bands are observed for the one‐electron reduced forms of all complexes. A combination of structural data, electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, and DFT calculations is used to elucidate the electronic structures of the complexes. Our DFT results indicate that the electronic natures of the various redox states of the complexes in vacuum differ greatly from those in a solvent continuum. We show here the tuning possibilities that arise upon substituting [O] for the isoelectronic [NR] groups in such quinone ligands.  相似文献   

6.
The complex [Ni(bpy)3]2+ (bpy=2,2′‐bipyridine) is an active catalyst for visible‐light‐driven H2 production from water when employed with [Ir(dfppy)2(Hdcbpy)] [dfppy=2‐(3,4‐difluorophenyl)pyridine, Hdcbpy=4‐carboxy‐2,2′‐bipyridine‐4′‐carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2‐evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3]2+. This study may offer a new paradigm for constructing simple and noble‐metal‐free catalysts for photocatalytic hydrogen production.  相似文献   

7.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

8.
Photooxidation of alkanes by dioxygen occurred under visible light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) which acts as a super photooxidant. Solvent‐free hydroxylation of cyclohexane and alkanes is initiated by electron transfer from alkanes to the singlet and triplet excited states of DDQ to afford the corresponding radical cations and DDQ??, as revealed by femtosecond laser‐induced transient absorption measurements. Alkane radical cations readily deprotonate to produce alkyl radicals, which react with dioxygen to afford alkylperoxyl radicals. Alkylperoxyl radicals abstract hydrogen atoms from alkanes to yield alkyl hydroperoxides, accompanied by regeneration of alkyl radicals to constitute the radical chain reactions, so called autoxidation. The radical chain is terminated in the bimolecular reactions of alkylperoxyl radicals to yield the corresponding alcohols and ketones. DDQ??, produced by the photoinduced electron transfer from alkanes to the excited state of DDQ, disproportionates with protons to yield DDQH2.  相似文献   

9.
Ruthenium polypyridyl complexes are widely used as light harvesters in dye‐sensitized solar cells. Since one of the potential applications of single‐wall carbon nanotubes (SWCNTs) and their derived materials is their use as active components in organic and hybrid solar cells, the study of the photochemistry of SWCNTs with tethered ruthenium polypyridyl complexes is important. A water‐soluble ruthenium tris(bipyridyl) complex linked through peptidic bonds to SWCNTs (Ru‐SWCNTs) was prepared by radical addition of thiol‐terminated SWCNT to a terminal C?C double bond of a bipyridyl ligand of the ruthenium tris(bipyridyl) complex. The resulting macromolecular Ru‐SWCNT (≈500 nm, 15.6 % ruthenium complex content) was water‐soluble and was characterized by using TEM, thermogravimetric analysis, chemical analysis, and optical spectroscopy. The emission of Ru‐SWCNT is 1.6 times weaker than that of a mixture of [Ru(bpy)3]2+ and SWCNT of similar concentration. Time‐resolved absorption optical spectroscopy allows the detection of the [Ru(bpy)3]2+‐excited triplet and [Ru(bpy)3]+. The laser flash studies reveal that Ru‐SWCNT exhibits an unprecedented two‐photon process that is enabled by the semiconducting properties of the SWCNT. Thus, the effect of the excitation wavelength and laser power on the transient spectra indicate that upon excitation of two [Ru(bpy)3]2+ complexes of Ru‐SWCNT, a disproportionation process occurs leading to delayed formation of [Ru(bpy)3]+ and the performance of the SWCNT as a semiconductor. This two‐photon delayed [Ru(bpy)3]+ generation is not observed in the photolysis of [Ru(bpy)3]3+; SWCNT acts as an electron wire or electron relay in the disproportionation of two [Ru(bpy)3]2+ triplets in a process that illustrates that the SWCNT plays a key role in the process. We propose a mechanism for this two‐photon disproportionation compatible with i) the need for high laser flux, ii) the long lifetime of the [Ru(bpy)3]2+ triplets, iii) the semiconducting properties of the SWNT, and iv) the energy of the HOMO/LUMO levels involved.  相似文献   

10.
Through the use of [Ru(bpy)3Cl2] (bpy=2,2′‐bipyridine) and [Ir(ppy)3] (ppy=phenylpyridine) as photocatalysts, we have achieved the first example of visible‐light photocatalytic radical alkenylation of various α‐carbonyl alkyl bromides and benzyl bromides to furnish α‐vinyl carbonyls and allylbenzene derivatives, prominent structural elements of many bioactive molecules. Specifically, this transformation is regiospecific and can tolerate primary, secondary, and even tertiary alkyl halides that bear β‐hydrides, which can be challenging with traditional palladium‐catalyzed approaches. The key initiation step of this transformation is visible‐light‐induced single‐electron reduction of C? Br bonds to generate alkyl radical species promoted by photocatalysts. The following carbon? carbon bond‐forming step involves a radical addition step rather than a metal‐mediated process, thereby avoiding the undesired β‐hydride elimination side reaction. Moreover, we propose that the Ru and Ir photocatalysts play a dual role in the catalytic system: they absorb energy from the visible light to facilitate the reaction process and act as a medium of electron transfer to activate the alkyl halides more effectively. Overall, this photoredox catalysis method opens new synthetic opportunities for the efficient alkenylation of alkyl halides that contain β‐hydrides under mild conditions.  相似文献   

11.
Trifluoromethylation of alkyl radicals is emerging as a powerful tool for C(sp3)–CF3 bond formations. Based on the hypothesis of CF3 group transfer from Cu(II)–CF3 to alkyl radicals, a number of trifluoromethylation reactions have been developed, including trifluoromethylation of alkyl halides, decarboxylative trifluoromethylation of aliphatic carboxylic acids, C(sp3)–H trifluoromethylation, amino‐ and carbo‐trifluoromethylation of alkenes, etc. Challenges in this intriguing field are also discussed.  相似文献   

12.
Proton‐coupled electron transfer (PCET) was investigated in three covalent donor–bridge–acceptor molecules with different bridge lengths. Upon photoexcitation of their Ru(bpy)32+ (bpy=2,2′‐bipyridine) photosensitizer in acetonitrile, intramolecular long‐range electron transfer from a phenolic unit to Ru(bpy)32+ occurs in concert with release of the phenolic proton to pyrrolidine base. The kinetics of this bidirectional concerted proton–electron transfer (CPET) reaction were studied as a function of phenol–Ru(bpy)32+ distance by increasing the number of bridging p‐xylene units. A distance decay constant (β) of 0.67±0.23 Å?1 was determined. The distance dependence of the rates for CPET is thus not significantly steeper than that for ordinary (i.e., not proton coupled) electron transfer across the same bridges, despite the concerted motion of oppositely charged particles into different directions. Long‐range bidirectional CPET is an important reaction in many proteins and plays a key role in photosynthesis; our results are relevant in the context of photoinduced separation of protons and electrons as a means of light‐to‐chemical energy conversion. This is the first determination of β for a bidirectional CPET reaction.  相似文献   

13.
The use of pyridinium‐activated primary amines as photoactive functional groups for deaminative generation of alkyl radicals under catalyst‐free conditions is described. By taking advantage of the visible light absorptivity of electron donor–acceptor complexes between Katritzky pyridinium salts and either Hantzsch ester or Et3N, photoinduced single‐electron transfer could be initiated in the absence of a photocatalyst. This general reactivity platform has been applied to deaminative alkylation (Giese), allylation, vinylation, alkynylation, thioetherification, and hydrodeamination reactions. The mild conditions are amenable to a diverse range of primary and secondary alkyl pyridiniums and demonstrate broad functional group tolerance.  相似文献   

14.
The photopolymerization of acrylamide (AA) initiated by the metallic complex tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)3+2] in the presence of aliphatic and aromatic amines as co‐initiators was investigated in aqueous solution. Aromatic amines, which are good quenchers of the emission of the metal‐to‐ligand‐charge‐transfer excited state of the complex, are more effective co‐initiators than those that do not quench the luminescence of Ru(bpy)3+2, such as aliphatic amines and aniline. Laser‐flash photolysis experiments show the presence of the reduced form of the complex, Ru(bpy)3+1, for all the amines investigated. For aliphatic amines, the yield of Ru(bpy)3+1 increases with temperature, and on the basis of these experiments, a metal‐centered excited state is proposed as the reactive intermediate in the reaction with these amines. The decay of the transient Ru(bpy)3+1 is faster in the presence of AA. This may be understood by an electron‐transfer process from Ru(bpy)3+1 to AA, regenerating Ru(bpy)3+2 and producing the radical anion of AA. It is proposed that this radical anion protonates in a fast process to give the neutral AA radical, initiating in this way the polymerization chain. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4265–4273, 2001  相似文献   

15.
Three Ru(bpy)32+ derivatives tethered to multiple viologen acceptors, [Ru(bpy)2(4,4′‐MV2)]6+, [Ru(bpy)2(4,4′‐MV4)]10+, and [Ru(bpy)(4,4′‐MV4)2]18+ [bpy=2,2′‐bipyridine, 4,4′‐MV2=4‐ethoxycarbonyl‐4′‐(N‐G1‐carbamoyl)‐2,2′‐bipyridine, and 4,4′‐MV4=4,4′‐bis(N‐G1‐carbamoyl)‐2,2′‐bipyridine, where G1=Asp(NHG2)‐NHG2 and G2=‐(CH2)2‐N+C5H4‐C5H4N+‐CH3] were prepared as “photo‐charge separators (PCSs)”. Photoirradiation of these complexes in the presence of a sacrificial electron donor (EDTA) results in storage of electrons per PCS values of 1.3, 2.7, and 4.6, respectively. Their applications in the photochemical H2 evolution from water in the presence of a colloidal Pt H2‐evolving catalyst were investigated, and are discussed along with those reported for [Ru(bpy)2(5,5′‐MV4)]10+, [Ru(4,4′‐MV4)3]26+, and [Ru(5,5′‐MV4)3]26+ (Inorg. Chem. Front. 2016 , 3, 671–680). The PCSs with high dimerization constants (Kd=105–106 m ?1) are superior in driving H2 evolution at pH 5.0, whereas those with lower Kd values (103–104 m ?1) are superior at pH 7.0, where Kd=[(MV+)2]/[MV+ . ]2. The (MV+)2 site can drive H2 evolution only at pH 5.0 as a result of its 0.15 eV lower driving force for H2 evolution relative to MV+ . , whereas the PCSs with lower Kd values exhibit higher performance at pH 7.0 owing to the higher population of free MV+ . . Importantly, the rate of electron charging over the PCSs is linear to the apparent H2 evolution rate, and shows an intriguing quadratic dependence on the number of MV2+ units per PCS.  相似文献   

16.
The dianion derived from (2Z,6Z)‐3,7‐diphenyl‐N2,N6‐di(pyridin‐2‐yl)pyrrolo[2,3‐f]indole‐2,6(1H,5H)‐diimine (H2BL), a modified BODIPY ligand precursor, is shown to be capable of bridging two metal complex fragments RuL2, L=2,4‐pentanedionato (acac?), 2,2’‐bipyridine (bpy) or 2‐phenylazopyridine (pap) in [Ru(acac)2Ru(μ‐BL)Ru(acac)2] ( 1 / 2 ), [Ru(bpy)2Ru(μ‐BL)Ru(bpy)2](ClO4)2 ([ 3 ](ClO4)2) and [Ru(pap)2Ru(μ‐BL)Ru(pap)2](ClO4)2 ([ 4 ](ClO4)2). The compounds, including a diastereoisomeric pair 1 (meso) and 2 (rac) were spectroscopically and structurally characterized. Reversible electron transfers as revealed by cyclic and differential pulse voltammetry allowed for an EPR and UV‐vis‐NIR spectroelectrochemical investigation of several neighboring charge states. Together with susceptibility measurements and TD‐DFT calculations the assignment of oxidation states reveals that 1 , 2 are diruthenium(III) species which can be oxidized or reduced by one electron whereas 3 2+ and 4 2+ contain ruthenium(II) and get reduced or oxidized mainly at the dianionic bridge ( 3 2+) or are reduced at the ancillary ligands pap ( 4 2+).  相似文献   

17.
Manganese(V)–oxo–porphyrins are produced by the electron‐transfer oxidation of manganese–porphyrins with tris(2,2′‐bipyridine)ruthenium(III) ([Ru(bpy)3]3+; 2 equiv) in acetonitrile (CH3CN) containing water. The rate constants of the electron‐transfer oxidation of manganese–porphyrins have been determined and evaluated in light of the Marcus theory of electron transfer. Addition of [Ru(bpy)3]3+ to a solution of olefins (styrene and cyclohexene) in CH3CN containing water in the presence of a catalytic amount of manganese–porphyrins afforded epoxides, diols, and aldehydes efficiently. Epoxides were converted to the corresponding diols by hydrolysis, and were further oxidized to the corresponding aldehydes. The turnover numbers vary significantly depending on the type of manganese–porphyrin used owing to the difference in their oxidation potentials and the steric bulkiness of the ligand. Ethylbenzene was also oxidized to 1‐phenylethanol using manganese–porphyrins as electron‐transfer catalysts. The oxygen source in the substrate oxygenation was confirmed to be water by using 18O‐labeled water. The rate constant of the reaction of the manganese(V)–oxo species with cyclohexene was determined directly under single‐turnover conditions by monitoring the increase in absorbance attributable to the manganese(III) species produced in the reaction with cyclohexene. It has been shown that the rate‐determining step in the catalytic electron‐transfer oxygenation of cyclohexene is electron transfer from [Ru(bpy)3]3+ to the manganese–porphyrins.  相似文献   

18.
《Electroanalysis》2003,15(1):55-64
Electron transfer processes for selected redox systems (ferrocene0/+, decamethylferrocene0/+, N,N,N′,N′‐tetramethyl‐1,4‐phenylenediamine0/+, 7,7,8,8‐tetracyano‐quinonedimethane0/?/2?, cobaltocene0/+, C600/?, and benzoquinone0/?) at electrodes modified by precipitation of electrochemically inactive [MIII(bpy)3](ClO4)3 (M=Co and Fe, bpy=2,2′‐bipyridine) layers have been investigated by cyclic voltammetry and electrochemical quartz crystal microbalance studies. The mediation of heterogeneous electron transfer is observed for these systems. For an electrode modified with [MIII(bpy)3](ClO4)3, the rate of the electrocatalytic mediation process depends on the formal potential of the redox system. If the formal potential of the redox system is close to the potential of [CoII(bpy)3]2+ oxidation (as is the case with the decamethylferrocene0/+, N,N,N′,N′‐tetramethyl‐1,4‐phenylenediamine0/+ and 7,7,8,8‐tetracyanoquinonedimethane0/? systems), the rate of the electrode reaction is limited by the rate of the chemical reduction of the [CoIII(bpy)3](ClO4)3 solid phase by the reduced form of redox couple. For C60 and benzoquinone, which have more negative formal potentials for reduction, the rate of diffusion of the electroactive reactant to the electrode surface limits the rate of electrode process. The kinetics of mediated electrocatalysis are also affected by the solvent. In the case of the Fe(III)‐based layer, the diffusion of the electroactive reactant in the solution is the rate determining step for the catalytic process at the modified electrode for all studied systems. Electrodes modified with [FeIII(bpy)3](ClO4)3 have been used for the quantitative determination of electroactive compounds. For ferrocene and decamethylferrocene, a linear relationship between the catalytic reduction current and the concentration of reactant in the solution has been observed over the concentration range from 1 to 50 mM.  相似文献   

19.
A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)32+‐doped titania (RuDT) nanoparticles dispersed in a perfluorosulfonated ionomer (Nafion) on a glassy carbon electrode (GCE) was developed in this paper. The electroactive component‐Ru(bpy)32+ was entrapped within the titania nanoparticles by the inverse microemulsion polymerization process that produced spherical sensors in the size region of 38±3 nm. The RuDT nanoparticles were characterized by electrochemical, transmission electron and scanning microscopy technology. The Ru(bpy)32+ encapsulation interior of the titania nanoparticles maintains its ECL efficiency and also reduces Ru(bpy)32+ leaching from the titania matrix when immersed in water due to the electrostatic interaction. This is the first attempt to prepare the RuDT nanoparticles and extend the application of electroactive component‐doped nanoparticles into the field of ECL. Since a large amount of Ru(bpy)32+ was immobilized three‐dimensionally on the electrode, the Ru(bpy)32+ ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. The ECL analytical performance of this ECL sensor for tripropylamine (TPA) was investigated in detail. This sensor shows a detection limit of 1 nmol/L for TPA. Furthermore, the present ECL sensor displays outstanding long‐term stability.  相似文献   

20.
An efficient chemical system for electron generation and transfer is constructed by the integration of an electron mediator ([Co(bpy)3]2+; bpy=2,2′‐bipyridine) with semiconductor photocatalysts. The introduction of [Co(bpy)3]2+ remarkably enhances the photocatalytic activity of pristine semiconductor photocatalysts for heterogeneous CO2 conversion; this is attributable to the acceleration of charge separation. Of particular interest is that the excellent photocatalytic activity of heterogeneous catalysts can be developed as a universal photocatalytic CO2 reduction system. The present findings clearly demonstrate that the integration of an electron mediator with semiconductors is a feasible process for the design and development of efficient photochemical systems for CO2 conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号