首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review our recent studies of photochemistry and plasmon chemistry of dimethyl disulfide, (CH3S)2, molecules adsorbed on metal surfaces using a scanning tunneling microscope (STM). The STM has been used not only for the observation of surface structures at atomic spatial resolution but also for local spectroscopies. The STM combined with optical excitation by light can be employed to investigate chemical reactions of single molecules induced by photons and localized surface plasmons. This technique allows us to gain insights into reaction mechanisms at a single molecule level. The experimental procedures to examine the chemical reactions using the STM are briefly described. The mechanism for the photodissociation reaction of (CH3S)2 molecules adsorbed on metal surfaces is discussed based on both the experimental results obtained with the STM and the electronic structures calculated by density functional theory. The dissociation reaction of the (CH3S)2 molecule induced by the optically excited plasmon in the STM junction between a Ag tip and metal substrate is also described. The reaction mechanism and pathway of this plasmon-induced chemical reaction are discussed by comparison with those proposed in plasmon chemistry.  相似文献   

2.
表面等离激元(SPP)存在于金属和介质界面,是光场和金属表面自由电子相互作用而产生的电子集体振荡行为.一方面,由于在金属纳米颗粒表面会形成局域的SPP震荡(LSP),可以调控金属表面附近分子的发光性质,因此,很多研究者尝试在有机电致发光器件(OLED)中引入金属纳米颗粒,利用LSP改善OLED器件性能;另一方面,在传统发光器件中,由于金属表面等离激元的波矢量和自由光波的波矢量不匹配,无法辐射成自由光波,最终只能以热能的形式耗散掉.通过改变金属表面形貌,如附加光栅结构等方法,使得SPP的能量能够耦合成自由光,从而提高发光器件的外量子效率.利用SPP来提高有机发光器件的效率,已经引起广泛的关注,本文着重综述以下两个方面的工作:一是采用金属纳米颗粒的LSP提高荧光分子辐射跃迁的几率,从而提升发光器件的内量子效率;二是利用有序或无序光栅结构使得SPP与自由光的波矢匹配来提高器件的耦合出光,从而提升外量子效率.  相似文献   

3.
Solvent structure and hammerhead ribozyme catalysis   总被引:2,自引:0,他引:2  
Although the hammerhead ribozyme is regarded as a prototype for understanding RNA catalysis, the mechanistic roles of associated metal ions and water molecules in the cleavage reaction remain controversial. We have investigated the catalytic potential of observed divalent metal ions and water molecules bound to a 2 A structure of the full-length hammerhead ribozyme by using X-ray crystallography in combination with molecular dynamics simulations. A single Mn(2+) is observed to bind directly to the A9 phosphate in the active site, accompanying a hydrogen-bond network involving a well-ordered water molecule spanning N1 of G12 (the general base) and 2'-O of G8 (previously implicated in general acid catalysis) that we propose, based on molecular dynamics calculations, facilitates proton transfer in the cleavage reaction. Phosphate-bridging metal interactions and other mechanistic hypotheses are also tested with this approach.  相似文献   

4.
In spite of the large scale industrial applications of the hydrodesulfurization (HDS) process, and of the considerable number of studies of this reaction on heterogeneous catalysts, the mechanisms involved are not yet clearly understood. In this article we first summarize the main mechanistic pathways that have been proposed to occur on surfaces for HDS of thiophenes, and then review those aspects of coordination and organometallic chemistry that are most pertinent to the activation, desulfurization and hydrogenation of thiophenes on metal complexes. The examples described constitute excellent molecular analogues of the species and reactions that are thought to intervene in heterogeneous catalysis, and thus complement surface studies and contribute to the understanding of this important reaction.  相似文献   

5.
催化反应过程伴随着气体分子与催化剂活性中心之间键的形成与转化,并以热量的形式表现出来.采用Tian-Calvet型微量热量计测量这些热量,则可能从能量角度研究气体分子在催化剂表面上的吸附与反应行为,为探索催化剂反应性能及机理提供依据.微量热量计与真空系统相结合的吸附量热技术已经广泛用于催化研究.本文总结了近十年来吸附量热技术在金属催化剂研究中的应用,阐述了这种技术在活性中心表征和反应性能关联方面的研究进展.此外,还介绍了我们研究组发展的脉冲量热装置进行催化反应过程研究的最新进展.  相似文献   

6.
Phase-transfer catalysis in analytical chemistry   总被引:1,自引:0,他引:1  
Phase-transfer catalysis (PTC) has been a well-established technique on the synthesis of organic chemicals for more than three decades. Its scope and underlying mechanistic features have been the subject of numerous studies and appear to be recognized and understood.

This review is intended to approach the subject by focusing on the extraction–preconcentration–derivatization/reaction prior to analysis and to chronicle recent progress made. We present the salient aspects of PTC modes followed by a brief review of mechanistic considerations including reaction mechanisms, selectivity, rates and kinetics pointing out to the potency of PTC in analytical chemistry. Specific guidelines are given on how to optimize a PTC-based analysis with respect to catalyst, solvent, reaction conditions and more, based on reaction characteristics.

Finally, using the PTC principles as a framework, selected real-life applications are provided, the capabilities and limitations of PTC are addressed for the purpose of direct analysis of organic analytes and certain advantages are highlighted.  相似文献   


7.
The applications of EPR spectroscopy to the study of catalysis and surface chemistry of oxides are reviewed. The specific features of the EPR spectra of catalytic materials are described and the means employed to enhance the amount of information that can be extracted from the spectra are discussed. Selected recent examples illustrate the possibilities offered by EPR techniques to the understanding of catalyst preparation, of the nature of active sites and reaction intermediates as well as of catalytic reaction mechanisms. One of the advantages of EPR is the possibility to investigate electron transfer phenomena (metal to ligand, ligand to metal or ligand to ligand) occurring between the surface transition metal ions and the adsorbed molecules. © 2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASEPR / catalysis / oxides / adsorption / reaction mechanisms / surface / electron transfer  相似文献   

8.
The efficient and selective synthesis of functionalized seven-membered rings remains an important pursuit within synthetic organic chemistry, as this motif appears in numerous drug-like molecules and natural products. Use of cycloaddition reactions remains an attractive approach for their construction within the perspective of atom and step economy. Additionally, the ability to combine multiple components in a single reaction has the potential to allow for efficient combinatorial strategies of diversity-oriented synthesis. The inherent entropic penalty associated with achieving these transformations has impressively been overcome with development of catalysis, whereby the reaction components can be pre-organized through activation by transition-metal-catalysis. The fine-tuning of metal/ligand combinations as well as reaction conditions allows for achieving chemo-, regio-, diastereo- and enantioselectivity in these transformations. Herein, we discuss recent advances in transition-metal-catalyzed construction of seven-membered rings via combination of 2–4 components mediated by a variety of metals. An emphasis is placed on the mechanistic aspects of these transformations to both illustrate the state of the science and to highlight the unique application of novel processes of transition-metals in these transformations.  相似文献   

9.
The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energy is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.  相似文献   

10.
Plasmonic catalysis has been recognised as a promising alternative to many conventional thermal catalytic processes in organic synthesis. In addition to their high activity in fine chemical synthesis, plasmonic photocatalysts are also able to maintain control of selectivity under mild conditions by utilising visible-light as an energy source. This review provides an overview of the recent advances in organic transformations with plasmonic metal nanostructures, including selective reduction, selective oxidation, cross-coupling and addition reactions. We also summarize the photocatalysts and catalytic mechanisms involving surface plasmon resonance. Finally, control of reaction pathway and strategies for tailoring product selectivity in fine chemical synthesis are discussed.  相似文献   

11.
有机硒化物是一类重要的分子,在药物、农用化学品、有机材料以及催化等领域有着广泛的应用,在有机分子中引入硒原子在合成化学中具有重要意义.杂环化合物是构成多种生物活性分子的重要骨架,因此,合成含硒杂环衍生物的研究备受关注.分别描述了近年来快速发展的金属催化、电化学驱动、可见光驱动、有机分子催化以及其它类型的硒环化反应,并对...  相似文献   

12.
We have developed a photoinduced protocol for the synthesis of pharmaceutically important oxazole molecules using diazo- and nitrile-containing reactants. The process involves the initial photolysis of the diazo compound to afford singlet carbenes, which are tapped by nitriles in a [3+2] cycloaddition fashion to give substituted oxazoles. With di-nitrile compounds, useful bis-oxazoles were obtained. The applicability of the transformation is showcased through the expedient synthesis of small-molecule drugs and biologically relevant molecules such as felbinac, pimprinine, texamine, ugnenenazole etc. The protocol is also useful for the generation of 2H and 13C isotope labelled oxazoles. Merging photolysis with continuous-flow chemistry was demonstrated for scaling up the reaction. The non-requirement of metal catalysis or photosensitizers to harness the light energy with blue light sufficing the execution of the reaction makes it a versatile and general protocol for the synthesis of structurally diverse oxazoles  相似文献   

13.
Within the ATP-grasp family of enzymes, divalent alkaline earth metals are proposed to chelate terminal ATP phosphates and facilitate the formation of peptide bonds. Density functional theory methods are used to explore the impact of metal ions on peptide bond formation, providing an insight into experimental metal substitution studies. Calculations show that alkaline earth and transition metal cations coordinate with an acylphosphate reactant and aid in the separation of the phosphate leaving group. The critical biochemical reaction is proposed to proceed through the formation of a six-membered transition state in the relatively nonpolar active site of human glutathione synthetase, an ATP-grasp enzyme. While the identity of the metal ion has a moderate impact on the thermodynamics of peptide bond formation, kinetic differences are much sharper. Simulations indicate that several transition metal ions, most notably Cu2+, may be particularly advantageous for catalysis. The detailed mechanistic study serves to elucidate the vital role of coordination chemistry in the formation of peptide bonds.  相似文献   

14.
An unprecedented arylboration of unactivated terminal alkenes, featuring 1,n‐regioselectivity, has been achieved by nickel catalysis. The nitrogen‐based ligand plays an essential role in the success of this three‐component reaction. This transformation displays good regioselectivity and excellent functional‐group tolerance. In addition, the incorporation of a boron group into the products provides substantial opportunities for further transformations. Also demonstrated is that the products can be readily transformed into pharmaceutically relevant molecules. Unexpectedly, preliminary mechanistic studies indicate that although the metal migration favors the α‐position of boron, selective and decisive bond formation is favored at the benzylic position.  相似文献   

15.
Bond activation and catalysis using s-block metals are of great significance. Herein, a series of calcium pincer complexes with deprotonated side arms have been prepared using pyridine-based PNP and PNN ligands. The complexes were characterized by NMR and X-ray crystal diffraction. Utilizing the obtained calcium complexes, unprecedented N2O activation by metal-ligand cooperation (MLC) involving dearomatization-aromatization of the pyridine ligand was achieved, generating aromatized calcium diazotate complexes as products. Additionally, the dearomatized calcium complexes were able to activate the N−H bond as well as reversibly activate H2, offering an opportunity for the catalytic hydrogenation of various unsaturated molecules. DFT calculations were applied to analyze the electronic structures of the synthesized complexes and explore possible reaction mechanisms. This study is an important complement to the area of MLC and main-group metal chemistry.  相似文献   

16.
There has been a renewed interest in the chemistry of hydrogen as a result of the ever-increasing global demands for energy. Recent studies have revealed new electronically unsaturated polynuclear metal complexes containing bulky ligands that exhibit a variety of reactions with hydrogen, including facile addition and elimination under mild conditions. Materials and molecules that can reversibly absorb large quantities of hydrogen are very attractive for hydrogen storage and hydrogenation catalysis. This Minireview summarizes recent studies of reactions of hydrogen with unsaturated mixed-metal cluster complexes containing platinum and bulky phosphine ligands. Some related studies on bimetallic cooperativity and the synthesis of trimetallic nanoparticles on mesoporous supports that exhibit high activity and selectivity for catalytic hydrogenations are also discussed.  相似文献   

17.
Skeletal reorganization reactions have emerged as an intriguing tool for converting readily available compounds into complicated molecules inaccessible by traditional methods. Herein, we report a unique skeleton-reorganizing coupling reaction of cycloheptatriene and cycloalkenones with amines. In the presence of Rh/acid catalysis, cycloheptatriene can selectively couple with anilines to deliver fused 1,2-dihydroquinoline products. Mechanistic studies indicate that the retro-Mannich type ring-opening and subsequent intramolecular Povarov reaction account for the ring reorganization. Our mechanistic studies also revealed that skeleton-reorganizing amination between anilines and cycloalkenones can be achieved with acid. The synthetic utilization of this skeleton-reorganizing coupling reaction was showcased with a gram-scale reaction, synthetic derivatizations, and the late-stage modification of commercial drugs.  相似文献   

18.
The reversible reduction protons to dihydrogen: 2H+ + 2e [symbol: see text] H2 is deceptively the simplest of reactions but one that requires multistep catalysis to proceed at practical rates. How the metal-sulfur clusters of the hydrogenases catalyse this interconversion is currently the subject of extensive structural, spectroscopic and mechanistic studies of the enzymes, of synthetic assemblies and of in silico models. This is driven both by curiosity and by the view that an understanding of the underlying chemistry may inform the design of new electrocatalytic systems for hydrogen production or uptake, pertinent to energy transduction technology in an 'Hydrogen Economy'. Can chemists design materials that replace the expensive platinum metal catalysts of fuel cells with metal-sulfur cluster assemblies utilising abundant Ni, Fe and S as in the natural systems? Here we review the state of the art.  相似文献   

19.
The dimerization of glycine is the simplest oligomerization of amino acids and plays an important role in biology. Although this reaction is thermodynamically unfavorable in the aqueous phase, it has been shown to be spontaneous in the gas phase and proceeds via two different concerted reaction mechanisms known as cis and trans. This may have profound implications in prebiotic chemistry as common atmospheric prenucleation clusters are thought to have participated in gas-phase reactions in the early Earth's atmosphere. We hypothesize that particular arrangements of water molecules in these clusters could lead to lowering of the reaction barrier of amino acid dimerization and could lead to abiotic catalysis toward polypeptides. We test our hypothesis on a system of the cis transition state of glycine dimerization solvated by one to five water molecules using a combination of a genetic algorithm-based configurational sampling, density functional theory geometries, and domain-based local pair natural orbital coupled-cluster electronic structure. First, we discuss the validity of the model chemistries used to obtain our results. Then, we show that the Gibbs free energy barrier for the concerted cis mechanism can indeed be lowered by the addition of up to five water molecules, depending on the temperature.  相似文献   

20.
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI/AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号