首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Surface characterization of silica-supported cobalt oxide catalysts   总被引:1,自引:0,他引:1  
Silica supported cobalt oxides were prepared by the impregnation method, using an aqueous solution of cobalt nitrate hexahydrate (Co(NO3)· 6H2O), then calcined at different temperatures (510, 620 and 870 K). Characterization of the samples was carried out by X-ray diffraction, N2-adsorption at −196°C, UV–Vis diffuse reflectance spectroscopy and KBr-IR spectroscopy of the calcination products. The surface acidity was studied by IR spectroscopy of adsorbed pyridine at different temperatures (300, 370, 470 and 570 K). Results indicated that Co3O4 is the stable phase on silica, however, dispersion of minor amount of cobalt oxide could not be ruled out. Results also indicated that the crystallinity of the formed Co3O4 increased by increasing the loading level and/or the calcination temperature. Furthermore, the surface area of the support was decreased by increasing the loading level and the calcination temperatures. It has been also found that the surface of the supported catalysts exposed strong different Lewis acid sites.  相似文献   

4.
A series of mixed oxides and ferrites of iron and cobalt has been prepared by taking iron and cobalt in the atomic ratio 10.50, 11.33 and 13.00, respectively. These samples were prepared by calcination of the stoichiometric amount of their respective nitrate salts for 6 h in air at 500±10°C. Characterization of the samples has been carried out using Mössbauer spectroscopy. Percentage formation of -Fe2O3 and CoFe2O4 has been determined using the same technique. These results have been supplemented by X-ray diffraction studies. The particle size has been calculated using Scanning Electron Microscopy. the decomposition of 0.5% w/v hydrogen peroxide at 40°C over the catalyst has also been studied.  相似文献   

5.
以乙二醇为溶剂,聚乙烯吡咯烷酮为表面活性剂,通过一步溶剂热法合成了分级中空结构的BiOBr-Pt催化剂。合成的分级中空结构BiOBr-2h催化剂的比表面积为28 m2·g-1,是对比样品BiOBr-1h的2倍,这种结构为催化反应提供更多的反应活性位点。此外,在催化剂中引入Pt增强了BiOBr的载流子传导速率,而且Pt可以作为电子陷阱捕获周围大量电子,有效抑制光生载流子的复合,从而提高 CO2还原的催化活性。光催化 CO2还原实验结果表明,BiOBr-Pt 的主要产物为 CO,产物选择性为99%,其CO产率达到了20.8 μmol·h-1·g-1,为原始BiOBr的2.1倍。这一结果说明,这种Pt负载且具有分级中空结构的催化剂可以有效地将CO2转化为增值化学品。  相似文献   

6.
以乙二醇为溶剂,聚乙烯吡咯烷酮为表面活性剂,通过一步溶剂热法合成了分级中空结构的BiOBr-Pt催化剂。合成的分级中空结构BiOBr-2h催化剂的比表面积为28.14 m2·g-1,是对比样品BiOBr-1h的2倍,这种结构为催化反应提供更多的反应活性位点。此外,在催化剂中引入Pt增强了BiOBr的载流子传导速率,而且Pt可以作为电子陷阱捕获周围大量电子,有效抑制光生载流子的复合,从而提高CO2还原的催化活性。光催化CO2还原实验结果表明,BiOBr-Pt的主要产物为CO,产物选择性为99%,其CO产率达到了20.8 μmol·h-1·g-1,为原始BiOBr的2.1倍。这一结果说明,这种Pt负载且具有分级中空结构的催化剂可以有效地将CO2转化为增值化学品。  相似文献   

7.
Cobalt oxide nanoparticles (NPs) supported on porous carbon (CoOx@CN) were fabricated by one-pot method and the hybrids could efficiently and selectively hydrogenate phenol to cyclohexanol with a high yield of 98%.  相似文献   

8.
《Comptes Rendus Chimie》2008,11(3):307-316
Iron and cobalt complexes are a new family of catalysts for ethylene oligomerization and polymerization. The extensive researches on bis(imino)pyridyl metal complexes have been carried out with the aim of synthesizing their derivatives and finding suitable reaction parameters for the optimum activity. Beyond the modification works of bis(imino)pyridyl metal complexes, several alternative models with similar coordination sphere have been developed in our group. This review article describes our experiences in innovating new models of iron and cobalt complexes as catalysts for ethylene oligomerization and polymerization.  相似文献   

9.
Hierarchical structured nanohelices of ZnS   总被引:2,自引:0,他引:2  
  相似文献   

10.
Here we demonstrate the synthesis of benzimidazoles through the coupling of 1,2-phenylenediamine with aldehydes by using Co(OH)2 and similarly CoO(II) as efficient solid catalysts in ethanol at room temperature. The Co(OH)2 solid catalyst gave better yields (82-98%) in short reaction times (4-7 h) than CoO(II) catalyst (80-94%, 6-9 h). These commercially available cheap catalysts are more active than many reported expensive heterogeneous catalysts.  相似文献   

11.
羧酸选择加氢是合成醇的重要方法,廉价高效的催化体系仍然在探索中.我们利用地球上储量丰富的钴氧化物作为催化剂,通过控制催化反应过程,进而实现高选择性地催化羧酸加氢制备醇.一系列含有不同官能团的羧酸可以被选择加氢至相应的醇类化合物,反应选择性可以满足工业生产要求.通过一系列的谱学表征以及理论计算,我们证实了钴氧化物在羧酸选择加氢反应中的优选活性位点位为氧化亚钴,从而建立了催化剂与反应活性之间的构效关系,为催化剂的理性设计提供指导.首先,我们选取硬脂酸加氢反应作为模型反应,通过对地球上储量丰富的氧化镍、四氧化三铁和四氧化三钴的催化活性对比发现,四氧化三钴催化剂活性最高,在473 K,2 MPa氢气条件下,反应速率可以达到1.2 mmol/(h·g).对四氧化三钴催化剂进行不同温度的预还原处理,我们发现催化剂的活性得到显著提高,其中573 K还原的样品活性最高,反应速率可以达到7.3 mmol/(h·g),要远远高于贵金属催化剂Pd/C(0.6 mmol/(h·g))和Pt/C(1.8 mmol/(h·g)).XRD结果表明,随着还原处理温度的不断升高,催化剂由四氧化三钴变为氧化亚钴,最终变为金属态的钴.当还原温度为573 K时,催化剂的组成为单一相氧化亚钴.XPS测试结果表明,当还原温度为573 K时,样品中只含有Co~(2+)的信号峰,并且Co/O的比例为1/1,进一步证明样品是纯态的氧化亚钴.从TEM照片中可以发现,在原始的四氧化三钴样品中观察到晶面间距为0.467和0.244 nm,分别对应四氧化三钴的(111)和(311)晶面.而对于573 K还原的样品只观察到一种晶面间距(0.246 nm),对应氧化亚钴的(111)晶面.结合表征手段和硬脂酸催化加氢活性结果,我们得出氧化亚钴是573 K还原样品催化羧酸加氢反应的活性位点.理论计算结果进一步证实了这个实验结论.理论计算结果表明,在氧化亚钴(111)晶面,硬脂酸加氢转换为十八醇是非常快速和高效的,然而,对于氢解C-C键和C-O键,需要耗费更高的能量,能垒约为1.2 e V.因为硬脂酸的吸附远远强于十八醇的吸附,硬脂酸的存在会抑制十八醇氢解形成烯烃的反应,只有当硬脂酸酸完全转化为十八醇,才会发生随后的氢解反应.通过控制催化反应过程,可以实现在氧化亚钴(111)晶面高选择性催化酸加氢至醇,也就是反应控制催化过程.基于氧化亚钴在硬脂酸加氢制备十八醇上的优异催化性能,我们进一步研究了一系列含有不同官能团的羧酸化合物的催化加氢,发现氧化亚钴表现出良好的官能团容忍度,可以实现高效、广谱的酸选择加氢至醇反应.  相似文献   

12.
CoO/Al2O3 catalysts containing amounts of cobalt ranging form 2 to 20% were prepared atpH 11 from neutral mesoporous alumina composed of γ-Al2O3 and poorly crystalline boehmite, and were then dried at 80?C. X-ray diffraction, DTA and TG techniques were used to study the structural changes produced upon thermal treatment up to 700?C. Soaking of the alumina in cobalt ammine complex solutions for a period of 10 days (the time required for equilibrium) resulted in a series of catalyst samples (I–V). Another sample (III-a) was soaked for a period of 5 days only in order to study the effect of the soaking time upon the equilibrium conditions. Cobalt aluminate (CoAl2O4) bands were characterized in all catalyst samples except III-a. They increased in intensity with increasing cobalt content. Surface species appeared in samples heated to 80?C, and others persisted at 150?C. Heating to temperatures above 200?C resulted in the formation of cobalt oxides, due to decomposition of the surface compounds. DTA and TG studies showed that this was more pronounced at higher concentrations of cobalt. Samples heated at 500?C and above did not undergo any further structural changes, except that the boehmite in the support was converted to γ-Al2O3. The variations in the surface parameters followed the same pattern as found previously [1], demonstrating that the catalyst samples are mesoporous, with retention of two ranges of pore size in most cases.  相似文献   

13.
The application of Fe@FexOy nanoparticles was examined for the sequestration of catalytic metal impurities from organic reaction products. An X-ray photoelectron spectroscopy (XPS) study of the recovered particles confirmed Fe@FexOy sequestered Co2+, Cu2+, Ni2+, RhX+, Pd2+, Ag+, and Pt4+ by coordination of the metal ion to the iron oxide surfaces and followed by subsequent reduction of the surface-bonded ions to their metallic state. Fe@FexOy metal sequestration was found to be effective for catalyst impurities in the absence of strongly coordinating environments but was inhibited by the presence of phosphines. Sequestration of phosphine-coordinated metal impurities was achieved through the addition of either cysteamine or 3-mercaptopropionic acid to the Fe@FexOy during sequestration. This approach was applied to model syntheses using Grubbs' Catalyst (first generation), Pd(PPh3)4, Pd2(dba)3, and Wilkinson's Catalyst (RhCl(PPh3)3).  相似文献   

14.
The use of metal organic frameworks (MOFs) for the catalytic production of nitric oxide (NO) is reported. In this account we demonstrate the use of Cu(3)(BTC)(2) as a catalyst for the generation of NO from the biologically occurring substrate, S-nitrosocysteine (CysNO). The MOF catalyst was evaluated as an NO generator by monitoring the evolution of NO in real time via chemiluminescence. The addition of 2, 10, and 15-fold excess CysNO to MOF-Cu(II) sites and cysteine (CysH) resulted in catalytic turnover of the active sites and nearly 100% theoretical yield of the NO product. Control experiments without the MOF present did not yield appreciable NO generation. In separate studies the MOF was found to be reusable over successive iterations of CysNO additions without loss of activity. Subsequently, the MOF catalyst was confirmed to remain structurally intact by pXRD and ATR-IR following reaction with CysNO and CysH.  相似文献   

15.
Surface science methods originating from analysis of noble metal catalysts are increasingly applied to metal oxides. These methods provide direct access to fundamental structural properties and phase equilibria governing the catalytic properties of metal oxide surfaces. However, no systematic way existed so far for transferring this knowledge to technical catalysts. The aim of this paper is to combine surface science with chemical engineering methods to bridge this gap. Styrene synthesis over pure and K-doped iron oxides is used as an example to develop and to explain the methodology. Single crystal films (SCF), grown epitaxially on a Pt-carrier are considered as ideal model surfaces. Comprehensive UHV analyses yield the structural properties of SCF as well as their interaction with relevant components of the reaction mixture. Their results are combined with conversion experiments to derive a mechanistic catalyst model along with quantitative information on the reaction rates. The activity of SCF as well as their phase transitions under reactive conditions can be described with a continuum model depending on the macroscopic properties of the system. This model forms the crucial link towards technical catalysts. It is shown that the behaviour of a powder catalyst can be described as a superposition of the above kinetic model and an appropriate porous model. In this paper we review the developed methodology and conclude with the evaluation of the concept.  相似文献   

16.
Catalytic performances and the reaction mechanism of Co(3)O(4)/AC (AC=activated carbon) for aerobic oxidation of alcohols carried out in the liquid phase were investigated. Co(3)O(4)/AC shows a high activity for aerobic oxidation of benzyl alcohol, comparable to noble metal catalysts (e.g., Au/AC) even in the absence of additives or promoters (e.g., NaOH). Changing preparation conditions, such as treatment temperature and/or time, can affect the catalytic performances of Co(3)O(4)/AC, due to decomposition of surface groups of the carbon support. Careful studies show that low alcohol conversions are obtained with either Co(3)O(4) or AC alone, which indicates that the high conversion observed over the Co(3)O(4)/AC is due to a synergistic effect between Co(3)O(4) and AC. Parallel experiments using a high-surface-area covalent triazine framework or oxygen-inert carbon nitride as support for the Co(3)O(4) catalyst also show lower conversions, which suggest that the ability of AC (in Co(3)O(4)/AC) to activate molecular oxygen is essential for the reaction. FTIR and XPS spectra taken from catalysts before and after the reaction confirm that oxygen activation proceeds mainly on the carbon support. As a result, it can be assumed that the alcohol dehydrogenation step proceeds on the metal oxide, whereas the oxygen activation step occurs mainly on the carbon support.  相似文献   

17.
PIC (Phase Inversion Composition) O-W nanoemulsions was used as a template for the synthesis of Hierarchical Porous Silica (HPS), and the oil phase of the nanoemulsion was used as a nanoreactor for the preparation of magnetic gamma-Fe(2)O(3) nanoparticles, confined within the silica matrix.  相似文献   

18.
孙文华 《高分子科学》2010,28(3):299-304
<正>The discovery of highly active 2,6-bis(imino)pyridyl iron and cobalt complexes provided a milestone of latetransition metal catalysts for ethylene oligomerization and polymerization with being currently investigated for the scale-up process.The crucial problems are remaining in the catalytic systems:the catalytic systems targeting ethylene polymerization produce more oligomers at elevated reaction temperatures,however,there is a recognizable amount of high-molecular-weight polyethylene remained in the modified catalytic system for the oligomerization process.Beyond the modification of bis(imino)pyridyl metal complexes,several alternative procatalysts' models have been developed in our group.This review highlighted the achievements in exploring new iron and cobalt complexes with tridentate NNN ligands as procatalysts for ethylene oligomerization and polymerization.  相似文献   

19.
20.
During precipitation and calcination at 200°C nanocrystalline Co3O4 was obtained with average size crystallites of 13 nm and a well developed specific surface area of 44 m2 g?1. A small addition of a structural promoter, e.g. Al2O3, increases the specific surface area of the cobalt oxide (54 m2 g?1) and decreases the average size of crystallites (7 nm). Al2O3 inhibits the reduction process of Co3O4 by hydrogen. Reduction of cobalt oxide with aluminium oxide addition runs by equilibrium state at all the respective temperatures. The apparent activation energy of the recrystallization process of the nanocrystalline cobalt promoted by the aluminium oxide is 85 kJ mol?1. Aluminium oxide improves the thermostability of both cobalt oxide and the cobalt obtained as a result of oxide phase reduction.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号