首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-enhanced Raman scattering (SERS) of graphene on a SiO(2)(300 nm)/Si substrate was investigated by depositing Au nanoparticles using thermal evaporation. This provided a maximum enhancement of 120 times for single-layer graphene at 633 nm excitation. SERS spectra and scan images of single-layer and few-layer graphene were acquired. Single-layer graphene provides much larger SERS enhancement compared to few-layer graphene, while in single-layer graphene the enhancement of the G band was larger than that of the 2D band. Furthermore, the D bands were identified in the SERS spectra; these bands were not observed in a normal Raman spectrum without Au deposition. Appearance of the D band is ascribed to the considerable SERS enhancement and not to an Au deposition-induced defect. Lastly, SERS enhancement of graphene on a transparent glass substrate was compared with that on the SiO(2)(300 nm)/Si substrate to exclude enhancement by multiple reflections between the Si substrate and deposited Au nanoparticles. The contribution of multiple reflections to total enhancement on the SiO(2)(300 nm)/Si substrate was 1.6 times out of average SERS enhancement factor, 71 times.  相似文献   

2.
Graphene–substrate interface is very crucial for analyzing graphene device performance. In this article, we have shown how the graphene device performance got affected because of different types of substrate surface treatment techniques used before graphene transfer. For fabrication of graphene devices, monolayer chemical vapor deposition (CVD) graphene was transferred onto SiO2 grown thermally on Si substrate. Forming gas annealed SiO2/Si shows better device performance as compared with as-grown SiO2 on Si substrate. A further effect of oxygen plasma and argon plasma cleaning of SiO2 surface before graphene transfer was investigated. Forming gas annealing improves the performance and plasma treatment degrade the graphene devices' performance.  相似文献   

3.
We report a new approach for nanosilicon–graphene hybrids with uniquely stable solid electrolyte interphase. Expanded graphite is gently exfoliated creating “defect‐free” graphene that is non‐catalytic towards electrolyte decomposition, simultaneously introducing high mass loading (48 wt. %) Si nanoparticles. Silane surface treatment creates epoxy chemical tethers, mechanically binding nano‐Si to CMC binder through epoxy ring‐opening reaction while stabilizing the Si surface chemistry. Epoxy‐tethered silicon pristine–graphene hybrid “E‐Si‐pG” exhibits state‐of‐the‐art performance in full battery opposing commercial mass loading (12 mg cm?2) LiCoO2 (LCO) cathode. At 0.4 C, with areal capacity of 1.62 mAh cm?2 and energy of 437 Wh kg?1, achieving 1.32 mAh cm?2, 340.4 Wh kg?1 at 1 C. After 150 cycles, it retains 1.25 mAh cm?2, 306.5 Wh kg?1. Sputter‐down XPS demonstrates survival of surface C‐Si‐O‐Si groups in E‐Si‐pG after repeated cycling. The discovered synergy between support defects, chemical‐mechanical stabilization of Si surfaces, and SEI‐related failure may become key LIB anode design rule.  相似文献   

4.
Graphene/noble metal substrates for surface enhanced RAMAN scattering (SERS) possess synergistically improved performance, due to the strong chemical enhancement mechanism accounted to graphene and the electromagnetic mechanism raised from the metal nanoparticles. However, only the effect of noble metal nanoparticles characteristics on the SERS performance was studied so far. In attempts to bring a light to the effect of quality of graphene, in this work, two different graphene oxides were selected, slightly oxidized GOS (20%) with low aspect ratio (1000) and highly oxidized (50%) GOG with high aspect ratio (14,000). GO and precursors for noble metal nanoparticles (NP) simultaneous were reduced, resulting in rGO decorated with AgNPs and AuNPs. The graphene characteristics affected the size, shape, and packing of nanoparticles. The oxygen functionalities actuated as nucleation sites for AgNPs, thus GOG was decorated with higher number and smaller size AgNPs than GOS. Oppositely, AuNPs preferred bare graphene surface, thus GOS was covered with smaller size, densely packed nanoparticles, resulting in the best SERS performance. Fluorescein in concentration of 10−7 M was detected with enhancement factor of 82 × 104. This work demonstrates that selection of graphene is additional tool toward powerful SERS substrates.  相似文献   

5.
CeO(2) nanoparticles/graphene nanocomposite is fabricated by depositing CeO(2) nanoparticles onto three-dimensional graphene material and its supercapacitor performance is further investigated. The nanocomposite shows a high specific capacitance and power density, demonstrating a strong synergistic effect possibly contributed from improved conductivity of CeO(2) and better utilization of graphene.  相似文献   

6.
《中国化学快报》2021,32(12):3787-3792
The application of Si as the anode materials for lithium-ion batteries (LIBs) is still severely hindered by the rapid capacity decay due to the structural damage caused by large volume change (> 300%) during cycling. Herein, a three-dimensional (3D) aerogel anode of Si@carbon@graphene (SCG) is rationally constructed via a polydopamine-assisted strategy. Polydopamine is coated on Si nanoparticles to serve as an interface linker to initiate the assembly of Si and graphene oxide, which plays a crucial role in the successful fabrication of SCG aerogels. After annealing the polydopamine is converted into N-doped carbon (N-carbon) coatings to protect Si materials. The dual protection from N-carbon and graphene aerogels synergistically improves the structural stability and electronic conductivity of Si, thereby leading to the significantly improved lithium storage properties. Electrochemical tests show that the SCG with optimized graphene content delivers a high capacity (712 mAh/g at 100 mA/g) and robust cycling stability (402 mAh/g at 1 A/g after 1500 cycles). Furthermore, the full cell using SCG aerogels as anode exhibits a reversible capacity of 187.6 mAh/g after 80 cycles at 0.1 A/g. This work provides a plausible strategy for developing Si anode in LIBs.  相似文献   

7.
We have developed a Si/graphene oxide electrode synthesized via ultrasonication-stirring method under alkaline condition. Scanning electron microscopy(SEM), transmission electron microscope(TEM), EDS dot-mapping and high-resolution transmission electron microscopy(HRTEM) results show that Si particles are evenly dispersed on the graphene oxide sheets. The electrochemical performance was investigated by galvanostatic charge/discharge tests at room temperature. The results revealed that Si/graphene oxide electrode exhibited a high reversible capacity of 2825 mAh/g with a coulombic efficiency of 94.6%at 100 mA/g after 15 cycles and a capacity retention of 70.8% after 105 cycles at 4000 mA/g. These performance parameters show a great potential in the high-performance batteries application for portable electronics, electric vehicles and renewable energy storage.  相似文献   

8.
Graphene‐based composites offer enhanced catalytic performance of metal and semiconductor nanoparticles, but their development is challenging because catalytic performance strongly depends on the structure and composition of the composite. Herein we show that the catalytic performance of a nanoparticle–graphene composite is very dependent on catalyst loading, which can be optimized for simultaneous enhancement of activity and selectivity. A glassy carbon working electrode has been modified with a gold nanoparticle–graphene (Au–G) composite with a varied number of gold nanoparticles per graphene, so that the conducting property of graphene and the electrocatalytic property of the metal were effectively coupled to give the best catalytic activity and selectivity. The modified electrode was used for simultaneous electrochemical detection of a mixture of electroactive species with high sensitivity. This result shows that the catalytic performance of a graphene‐based composite is sensitive to the catalyst loading and should be optimized for the best performance.  相似文献   

9.
鞠剑  陈卫 《电化学》2014,20(4):353
银基氧还原电催化剂具有较高的电催化活性且价格相对低廉,因而受到广泛关注. 本文采用简单、预先合成的石墨烯量子点作为载体和还原剂,制得了负载于石墨烯量子点、且无保护剂和表面活性剂的表面洁净银纳米粒子(Ag NPs/GQDs). 电化学研究表明,Ag NPs/GQDs复合电催化剂的氧还原有较高的电催化活性,氧在碱性溶液中可经4电子途径还原为水. 与商业铂碳电极(Pt/C)相比,AgNPs/GQDs电极具有高催化电流密度、良好稳定性和极佳抗甲醇性能. 该银纳米粒子对开发高性能和低成本的非铂氧还原电催化剂有潜在的应用前景.  相似文献   

10.
In this work,via a facile solvothermal route,we synthesized an anode material for lithium ion batteries(LIBs)—SnS_2 nanoparticle/graphene(SnS_2 NP/GNs) nanocomposite.The nanocomposite consists of SnS_2nanoparticles with an average diameter of 4 nm and graphene nanosheets without restacking.The SnS_2 nanoparticles are firmly anchored on the graphene nanosheets.As an anode material for LIBs,the nanocomposite exhibits good Li storage performance especially high rate performance.At the high current rate of 5,10,and 20 A/g,the nanocomposite delivered high capacities of 525,443,and 378 mAh/g,respectively.The good conductivity of the graphene nanosheets and the small particle size of SnS_2contribute to the electrochemical performance of SnS_2 NP/GNs.  相似文献   

11.
Silicon-carbon nanocomposite materials are widely adopted in the anode of lithium-ion batteries (LIB). However, the lithium ion (Li+) transportation is hampered due to the significant accumulation of silicon nanoparticles (Si) and the change in their volume, which leads to decreased battery performance. In an attempt to optimize the electrode structure, we report on a self-assembly synthesis of silicon nanoparticles@nitrogen-doped reduced graphene oxide/carbon nanofiber (Si@N-doped rGO/CNF) composites as potential high-performance anodes for LIB through electrostatic attraction. A large number of vacancies or defects on the graphite plane are generated by N atoms, thus providing transmission channels for Li+ and improving the conductivity of the electrode. CNF can maintain the stability of the electrode structure and prevent Si from falling off the electrode. The three-dimensional composite structure of Si, N-doped rGO, and CNF can effectively buffer the volume changes of Si, form a stable solid electrolyte interface (SEI), and shorten the transmission distance of Li+ and the electrons, while also providing high conductivity and mechanical stability to the electrode. The Si@N-doped rGO/CNF electrode outperforms the Si@N-doped rGO and Si/rGO/CNF electrodes in cycle performance and rate capability, with a reversible specific capacity reaching 1276.8 mAh/g after 100 cycles and a Coulomb efficiency of 99%.  相似文献   

12.
CuFe_2O_4-TiO_2/graphene nanocomposites have been prepared via a one-step hydrothermal method,and the as-prepared CuFe_2O_4-TiO_2/graphene was characterized by X-ray powder diffraction,Raman spectroscopy,scanning electron microscopy and transmission electron microscopy.The transmission electron microscopy demonstrated that CuFe_2O_4-TiO_2 nanoparticles were successfully dispersed on the graphene sheets.Photocatalytic activity of nanocomposites was evaluated in terms of degradation of methylene blue(MB) dye solution under visible light radiation.Results showed that the photocatalytic efficiency of CuFe_2O_4-TiO_2/graphene nanocomposites was higher than its individual pure oxides(CuFe_2O_4 or TiO_2) and TiO_2/graphene.The enhancing photocatalytic activity performance of the CuFe_2O_4-TiO_2/graphene nanocomposites may attributed to the mutual effect between the Cu Fe_2O_4,Ti O_2 nanoparticles and the graphene sheets.Moreover,Cu Fe_2O_4 nanoparticles have excellent magnetic property,which makes the CuFe_2O_4-TiO_2/graphene heteroarchitecture magnetically recyclable in a suspension system.  相似文献   

13.
Graphene composites with hemin and gold nanoparticles show a better performance for hydrogen peroxide decomposition compared to that of the three components alone or duplex/hybrid complexes. Our previous studies showed that the morphology of the Au nanoparticles may greatly influence the catalytic activity of graphene‐family peroxidase mimics. Recently, we found that Au nanoflowers could grow in situ and form on the surface of hemin/RGO (reduced graphene oxide). The prickly morphology of this Au nanoflower brought a higher catalytic ability with enhanced kinetic parameters than traditional Au nanoparticles that showed a smooth surface. Therefore, based on this discovery, a smart electrochemical aptamer biosensor for K562 leukemia cancer cells was further presented with good performance in selectivity and sensitivity attributed to the excellent mimetic peroxidase catalytic activity of this newly synthesized Au nanoflower decorated graphene–hemin composite (H‐RGO‐Au NFs).  相似文献   

14.
We report the synthesis of sandwich‐structured graphene–nickel silicate–Ni ternary composites by using the solvothermal method followed by a simple in situ reduction procedure. The composites show an interesting structure with graphene sandwiched between two layers of well‐dispersed Ni nanoparticles (NPs) anchored on ultrathin nickel silicate nanosheets. These ternary composites exhibit enhanced performance as anode materials owing to the synergistic effect between the graphene matrix and electrochemically inert Ni nanoparticles, an effect that holds promise for the design and fabrication of other advanced electrode materials.  相似文献   

15.
Li(3)V(2)(PO(4))(3)/graphene nanocomposites have been firstly formed on reduced graphene sheets as cathode material for lithium batteries. The nanocomposites synthesized by the sol-gel process exhibit excellent high-rate and cycling stability performance, owing to the nanoparticles connected with a current collector through the conducting graphene network.  相似文献   

16.
The Si/SiO nanocomposite was synthesized by a sol–gel method in combination with a following heat-treatment process. It was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and capacity measurement as anode material for lithium ion battery. Si nanoparticles were coated with SiO and a core-shell structured nanocomposite was formed. The core-shell Si/SiO nanocomposite displays better reversibility of lithium insertion/extraction and higher coulomb efficiency than virginal Si nanoparticles. The SiO shell envelops the Si nanoparticles to suppress the aggregation of the nanoparticles during cycling. As a result, the core-shell Si/SiO nanocomposite exhibits better capacity retention than virginal Si nanoparticles, indicating that this is a promising approach to improve the electrochemical performance of nano anode materials for lithium ion battery.  相似文献   

17.
The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru(13) nanoparticle on a single vacancy graphene is as high as -7.41 eV, owing to the hybridization between the dsp states of the Ru particles with the sp(2) dangling bonds at the defect sites. Doping the defective graphene with boron would further increase the binding energy to -7.52 eV. The strong interaction results in the averaged d-band center of the deposited Ru nanoparticle being upshifted toward the Fermi level from -1.41 eV to -1.10 eV. Further study reveals that the performance of the nanocomposites against hydrogen, oxygen and carbon monoxide adsorption is correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles deposited on defective graphene are expected to exhibit both high stability against sintering and superior catalytic performance in hydrogenation, oxygen reduction reaction and hydrogen evolution reaction.  相似文献   

18.
Si/graphene composite was prepared by simply mixing of commercially available nanosize Si and graphene. Electrochemical tests show that the Si/graphene composite maintains a capacity of 1168 mAh g?1 and an average coulombic efficiency of 93% up to 30 cycles. EIS indicates that the Si/graphene composite electrode has less than 50% of the charge-transfer resistance compared with nanosize Si electrode, evidencing the enhanced ionic conductivity of Si/graphene composite. The enhanced cycling stability is attributed to the fact that the Si/graphene composite can accommodate large volume charge of Si and maintain good electronic contact.  相似文献   

19.
Thin membranes (900 nm) were prepared by direct transformation of infiltrated amorphous precursor nanoparticles, impregnated in a graphene oxide (GO) matrix, into hydroxy sodalite (SOD) nanocrystals. The amorphous precursor particles rich in silanols (Si?OH) enhanced the interactions with the GO, thus leading to the formation of highly adhesive and stable SOD/GO membranes via strong bonding. The cross‐linking of SOD nanoparticles with the GO in the membranes promoted both the high gas permeance and enhanced selectivity towards H2 from a mixture containing CO2 and H2O. The SOD/GO membranes are moisture resistance and exhibit steady separation performance (H2 permeance of about 4900 GPU and H2/CO2 selectivity of 56, with no degradation in performance during the test of 50 h) at high temperature (200 °C) under water vapor (4 mol %).  相似文献   

20.
Thin membranes (900 nm) were prepared by direct transformation of infiltrated amorphous precursor nanoparticles, impregnated in a graphene oxide (GO) matrix, into hydroxy sodalite (SOD) nanocrystals. The amorphous precursor particles rich in silanols (Si−OH) enhanced the interactions with the GO, thus leading to the formation of highly adhesive and stable SOD/GO membranes via strong bonding. The cross-linking of SOD nanoparticles with the GO in the membranes promoted both the high gas permeance and enhanced selectivity towards H2 from a mixture containing CO2 and H2O. The SOD/GO membranes are moisture resistance and exhibit steady separation performance (H2 permeance of about 4900 GPU and H2/CO2 selectivity of 56, with no degradation in performance during the test of 50 h) at high temperature (200 °C) under water vapor (4 mol %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号