共查询到20条相似文献,搜索用时 78 毫秒
1.
叙述M1Ni4.5Al0.5贮氢合金分离氢中氪、氙的基本原理,分了分离时氢中氪、浓度与分离温度的关系。结果表明,当T为298K时,贮氢合金N1Ni4.5Al0.5与TiFe0.86Mn0.1的分离性能基本相似,分离浓度与放氢体积符合N=ae^-br方程。 相似文献
2.
3.
研究了用B掺杂替代Al对AB5型稀土贮氢合金相结构和电化学性能的影响。对M1Ni3.55Co0.75Mn0.4Al0.3-xBx(x=0,0.1,0.2,0.3)合金的研究结果表明:掺B后贮氢合金出现了CeCo4B第二相,导致贮氢合金的电化学容量下降;随B含量的增加和Al含量的减少,氢的扩散系数明显上升,合金的极化电阻减小,合金的高倍率放电性能和低温性能得到明显改善。 相似文献
4.
5.
6.
贮氢合金的吸放氢性能测定 总被引:4,自引:0,他引:4
贮氢合金的吸放氢量,压力组成等温线,以及吸放氢过程的热力学函数变化诸性能的测定,离不开一套适宜的高压一真空实验装置.不少研究者曾报导过较简单的仪器装置[1-4].还有将吸氢装置配以色谱仪和质谱仪来研究合金的吸氢与中毒问.为测定各类贮氢合金的吸氢性能本实验室研制并装配了一种准确实用的实验装置,可在-196℃至+500℃和16MPa-0.0001MPa氢压范围内获得准确的平衡数据.1实验装置与仪器实验装置由阀件、压力表、压力传感数字低压计、真空泵和反应器组成(图1).全部管路为外径rk3mm的不锈钢管.阀件是自行设计的高压微型阀… 相似文献
7.
本文较为详细地介绍了研究稀土贮氢合金性能过程中几种常用的测试技术。在贮氢合金组织结构方面,应用XRD、SEM和金相测试技术,研究贮氢合金的相结构,通过有关公式计算合金晶粒尺寸,以及反映热处理工艺前后相结构、晶粒形貌、晶界的变化情况。在贮氢合金吸放氢机理方面,通过将贮氢合金粉制作成微电极,采用恒电位阶跃、交流阻抗、循环伏安电化学测试技术,研究稀土贮氢合金电极反应的动力学性能,计算合金电极的交换电流密度、氢扩散系数及固/液界面电荷传递电阻等参数;采用PCT测试仪,研究贮氢合金的储氢量、平衡氢压等性能。在贮氢合金电化学性能方面,通过采用模拟电池测试技术,研究贮氢合金的活化、放电容量、放电平台、循环等性能。 相似文献
8.
9.
采用熔体快淬法制备了(Mg72.2Cu27.8)90Nd10的非晶贮氢合金带,用DSC差热分析仪测定了非晶合金带的热稳定性和非晶形成能力,采用透射电镜TEM和X射线衍射仪表征了不同结晶程度的贮氢合金带的微观组织结构.结果表明:非晶(Mg72.2Cu27.8)90Nd10贮氢合金的晶化过程分为3个步骤:首先在170℃生成平均晶粒尺寸为5~10nm Mg2Cu相;当回火处理温度升高至210℃时,非晶(Mg72.2Cu27.8)90Nd10贮氢合金发生了第二步晶化反应,生成了α-Mg相;当回火处理温度升高到335℃以后,非晶贮氢合金已经完全晶化,生成了稳定的Mg2Cu,α-Mg和Cu5Nd相,晶化后的颗粒尺寸有50~80nm.对不同组织结构的(Mg72.2Cu27.8)90Nd10合金的贮氢性能测试表明:完全非晶状态的(Mg72.2Cu27.8)90Nd10合金具有最快的吸氢速率和最高的贮氢量(3.2%(质量分数)). 相似文献
10.
采用快淬法制备稀土镁基贮氢合金。研究了覆盖剂,以及镁含量、热处理工艺对合金电性能的影响。当镁含量为1.09wt%时,0.2C放电容量〉380mAh/g,以2C充放,循环寿命〉500次。经XRD分析,贮氢合金具有纳米晶结构,平均晶粒尺寸〈50nm。PCTN试结果表明,随着温度升高,合金的平台压力增加,平台区域变宽,且平坦。 相似文献
11.
12.
Shumin Han Yuan Li Zhong Zhang Xilin Zhu Jinhua Li Lin Hu 《Frontiers of Chemistry in China》2009,4(1):48-51
The Ml-Mg-Ni-based (Ml = La-rich mixed lanthanide) hydrogen storage alloy Ml0.88Mg0.12Ni3.0-Mn0.10Co0.55Al0.10 was prepared by inductive melting. The micro-structure was analyzed by XRD and SEM. The alloy consists mainly of CaCu5-type phase, Ce2Ni7-type phase and Pr5Co19-type phase. The electrochemical measurements show that the maximum discharge capacity is 386 mAh/g, 16.3% higher than that
of the commercial AB5-type alloy (332 mAh/g). At discharge current density of 1 100 mA/g, high rate dischargeability is 62%, while that of the
AB5-type alloy is only 45%. The discharge capacity decreases to 315 mAh/g after 300 charge/ discharge cycles, 81.5% of the
maximum discharge capacity.
__________
Translated from Journal of Xi’an Jiao Tong University, 2008, 42(3) (in Chinese) 相似文献
13.
The electrochemical hydrogen storage properties and mechanisms of the Ti55V10Ni35 quasicrystal + xLiH(x = 3, 6 and 9 wt.%) system are investigated and discussed in this paper. A composite material in the Ti55V10Ni35 quasicrystal and system has been synthesized moderately by means of mechanical milling under an argon atmosphere, which can avoid reaction of releasing of hydrogen during the process of milling. The results indicate that the addition of LiH significantly improves the electrochemical characteristics of composite material. The maximum discharge capacity increases from 220.1 mAh/g to 292.3 mAh/g on Ti55V10Ni35 + 6 wt.% LiH, and the cycling stability is also enhanced too. In addition, the high rate dischargeability (HRD) is ameliorated remarkably, and the value of HRD value at 240 mA/g rises by 78.1%–87.8% for Ti55V10Ni35 + 6 wt.% LiH alloy electrodes. The improvement of characteristics of the electrochemical hydrogen storage characteristics may be attributed to LiH, which has excellent electrochemical activity. 相似文献
14.
Chenguang Zhang ;Jiajun Li ;Chunsheng Shi ;Chunnian He ;Enzuo Liu ;Naiqin Zhao 《天然气化学杂志》2014,(3):324-330
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe_3C@CNOs and Fe_(0.64)Ni_(0.36)@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system. 相似文献
15.
《Journal of Energy Chemistry》2014,23(3):324-330
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe_3C@CNOs and Fe_(0.64)Ni_(0.36)@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system. 相似文献
16.
17.
18.
Carbon paste electrodes: correlation between the electrochemical hydrogen storage capacity and the physicochemical properties of carbon blacks 总被引:1,自引:0,他引:1
The difficulties in the use of carbon paste electrodes to quantify the electrochemical adsorption of hydrogen in nanocarbon materials are described. Chronoamperometry studies using a Ferro/Ferri redox couple were performed to obtain the electrochemical active area of paste electrodes prepared by dispersion of differing samples of carbon blacks (CB) within silicon oil. This electrochemical active area was combined with the BET-surface area of the carbon blacks, to obtain the mass of superficial carbon involved in the electrochemical processes. To assure equal conditions for comparison, the electronic conductivity of the paste was equivalent in all the samples. From our results it appears that cyclic voltammetry, combined with carbon paste electrodes and nitrogen adsorption isotherms, provides a simple and less expensive route for the qualitative evaluation of the electrochemical hydrogen uptake of novel carbon materials. Still, for quantitative measurements, some issues remain unsolved in highly structured carbons, where the lack of penetration of the bulky Ferro/Ferri redox couple in the micropores of the CB and the occurrence of solid-state diffusion cause the underestimation of the mass involved in hydrogen adsorption. 相似文献
19.
Peng Lv Zhong-min Wang Nian-lei Shi Huai-ying Zhou Jian-qiu Deng Qing-rong Yao Huai-gang Zhang 《Russian Journal of Electrochemistry》2014,50(10):953-958
A series of experiments were performed to investigate the effect of TiMn1.5 alloying on the structure, hydrogen storage properties and electrochemical properties of LaNi3.8Co1.1Mn0.1 hydrogen storage alloys at 303 K. For simple, A, B, and C are used to represent alloys (x = 0 wt %, x = 4 wt % and x = 8 wt %) respectively. The results of XRD and SEM show that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloys have LaNi5 phase and (NiCo)3Ti phase. Based on the results of PCT curves, the hydrogen storage capacities of LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloys are about 1.28 wt % (A), 1.16 wt % (B) and 1.01 wt % (C) at 303 K. And the released pressure platform and the pressure hysteresis decrease with the increase of TiMn1.5 content. Meanwhile the activation curves show that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloy electrodes can be activated in three times and the maximum discharge capacity is 343.74 mA h/g at 303 K. In addition, with the increase of TiMn1.5 content, the cyclic stability of the hydrogen storage alloy electrodes decreases obviously and the capacity retention decreases from 76.70% to 70.00% when TiMn1.5 content increases from A to C. It also can be seen that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloy electrode C and B have the best self-discharge ability and the best high-rate discharge ability from self-discharge curves and high-rate discharge curves. 相似文献