首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The syntheses, structures, and magnetic properties of the compounds of formula [Fe (III)(sal 2trien)] 2[Mn (II) 2(ox) 3].4H 2O.C 3H 7NO ( 1) and [In (III)(sal 2trien)] 2[Mn (II) 2(ox) 3].3H 2O.CH 3OH (2) are reported. The structure presents a homometallic 2D honeycomb anionic layer formed by Mn (II) ions linked through oxalate ligands and a cationic double layer of [Fe(sal 2trien)] (+) or [In(sal 2trien)] (+) complexes intercalated between the 2D oxalate network. The magnetic properties and M?ssbauer spectroscopy of 1 indicate the coexistence of a magnetic ordering of the Mn(II) oxalate network that behaves as a weak ferromagnet and a gradual spin crossover of the intercalated [Fe(sal 2trien)] (+) complexes.  相似文献   

2.
Complex [Ag(tpba)N(3)] (1) was obtained by reaction of novel tripodal ligand N,N',N"-tris(pyrid-3-ylmethyl)-1,3,5-benzenetricarboxamide (TPBA) with [Ag(NH(3))(2)]N(3). While the reactions between 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (TITMB) and silver(I) salts with different anions and solvent systems give six complexes: [Ag(3)(titmb)(2)](N(3))(3).CH(3)OH.4 H(2)O (2), [Ag(3)(titmb)(2)](CF(3)SO(3))(2)(OH).5 H(2)O (3), [Ag(3)(titmb)(2)][Ag(NO(3))(3)]NO(3).H(2)O (4), [Ag(3)(titmb)(2)(py)](NO(3))(3).H(2)O (py=pyridine) (5), [Ag(3)(titmb)(2)(py)](ClO(4))(3) (6), and [Ag(3)(titmb)(2)](ClO(4))(3).CHCl(3) (7). The structures of these complexes were determined by X-ray crystallography. The results of structural analysis of complexes 1 and 2, with the same azide anion but different ligands, revealed that 1 is a twofold interpenetrated 3D framework with interlocked cage-like moieties, while 2 is a M(3)L(2) type cage-like complex with a methanol molecule inside the cage. Entirely different structure and topology between 1 and 2 indicates that the nature of organic ligands affected the structures of assemblies greatly. While in the cases of complexes 2-7 with flexible tripodal ligand TITMB, they are all discrete M(3)L(2) type cages. The results indicate that the framework of these complexes is predominated by the nature of the organic ligand and geometric need of the metal ions, but not influenced greatly by the anions and solvents. It is interesting that there is a divalent anion [Ag(NO(3))(3)](2-) inside the cage 4 and an anion of ClO(4)(-) or NO(3)(-) spontaneously encapsulated within the cage of complexes 5, 6 and 7.  相似文献   

3.
Zheng YQ  Lin JL  Kong ZP 《Inorganic chemistry》2004,43(8):2590-2596
Reactions of 4,4'-bipyridine (bpy) with Mn(C(4)H(4)O(4)).4H(2)O and Mn(C(5)H(6)O(4)).4H(2)O in methanolic aqueous solutions yielded [Mn(bpy)(H(2)O)(C(4)H(4)O(4))].0.5bpy (1) and Mn(bpy)(C(5)H(6)O(4)) (2), respectively, and reactions of freshly prepared Mn(OH)(2)(-)(2)(x)(CO(3))(x).yH(2)O, adipic acid and 4,4'-bipyridine in a methanolic aqueous solution afforded Mn(bpy)(C(6)H(8)O(4)) (3). The six-coordinate Mn atoms in 1 are interlinked by flexible succinato ligands to form layers, which are sustained by rigid bpy ligands into an 3D open framework with the free bpy molecules in tunnels. The ribbonlike chains in 2 result from Mn atoms bridged by glutarato ligands and are connected by bpy ligands into open layers. In 3, the Mn atoms are bridged by both bpy and adipato ligands to form 3D nanoporous frameworks and 2-fold interpenetration of the resulting 3D frameworks completes the crystal structure. In comparison with 1 and 2, compound 3 displays significant antiferromagnetic behavior at low temperature. The antiferromagnetic exchange becomes stronger from 1 through 2 to 3, and the antiferromagnetic ordering of Mn(2+) centers is related to the syn-syn bridging mode of the terminal carboxylate groups of alpha,omega-dicarboxylate anions. Crystal data: C(19)H(18)MnN(3)O(5) (1), monoclinic P2(1)/c, a= 11.686(2) A, b = 17.847(2) A, c = 8.852(1) A, beta = 99.67(1) degrees, V = 1819.9(4) A(3), Z = 4, D(c) = 1.545 g.cm(-3); C(15)H(14)MnN(2)O(4) (2), triclinic P, a = 8.145(2) A, b = 9.574(2) A, c = 10.180(1) A, alpha = 108.01(3) degrees, beta = 93.55(3) degrees, gamma = 105.30(1) degrees, V = 719.2(2) A(3), Z = 2, D(c) = 1.576 g.cm(-3); C(15)H(14)MnN(2)O(4) (3), triclinic P, a = 8.544(1) A, b= 8.881(1) A, c = 10.949(2) A, alpha = 108.81(1) degrees, beta = 95.40(1) degrees, gamma = 101.94(1) degrees, V = 757.7(2) A(3), Z = 2, D(c) = 1.557 g.cm(-3).  相似文献   

4.
Two new polymeric azido-bridged manganese complexes of formulas [Mn(N3)2 (bpee)]n (1) and {[Mn(N3)(dpyo)Cl(H2O)2](H2O)}n (2) [bpee, trans-1,2-bis(4-pyridyl)ethylene; dpyo, 4,4'-dipyridyl N,N'-dioxide] have been synthesized and characterized by single-crystal X-ray diffraction analysis and low-temperature magnetic study. Both the complexes 1 and 2 crystallize in the triclinic system, space group P1, with a = 8.877(3) A, b = 11.036(3) A, c = 11.584(4) A, alpha = 72.62(2) degrees, beta = 71.06(2) degrees, gamma = 87.98(3) degrees, and Z = 1 and a = 7.060(3) A, b = 10.345(3) A, c = 11.697(4) A, alpha = 106.86(2) degrees, beta = 113.33(2) degrees, gamma = 96.39(3) degrees, and Z = 2, respectively. Complex 1 exhibits a 2D structure of [-Mn(N3)2-]n chains, connected by bpee ligands, whose pyridine rings undergo pi-pi and C-H...pi interactions. This facilitates the rare arrangement of doubly bridged azide ligands with one end-on and two end-to-end (EO-EE-EE) sequence. Complex 2 is a neutral 1D polymer built up by [Mn(N3)(dpyo)Cl(H2O)2] units and lattice water molecules. The metals are connected by single EE azide ligands, which are arranged in a cis position to the Mn(II) center. The 1D zipped chains are linked by H-bonds involving lattice water molecules and show pi-pi stacking of dpyo pyridine rings to form a supramolecular 2D layered structure. The magnetic studies were performed in 2-300 K temperature range, and the data were fitted by considering an alternating chain of exchange interactions with S = 5/2 (considered as classical spin) with the spin Hamiltonians H = -Ji sigma(S(3i)S(3i+1) + S(3i+1)S(3i+2)) - J2 sigmaS(3i-1)S(3i) and H = -Ji sigmaS(2i)S(2i+1) - J2 sigmaS(2i+1)S(2i+2) for complexes 1 and 2, respectively. Complex 2 exhibits small antiferromagnetic coupling between the metal centers, whereas 1 exhibits a new case of topological ferromagnetism, which is very unusual.  相似文献   

5.
The reactions of manganese(II) acetate or perchlorate, sodium azide or sodium cyanate, and the zwitterionic dicarboxylate ligand 1,4-bis(4-carboxylatopyridinium-1-methylene)benzene (L) under different conditions yielded three different Mn(II) coordination polymers with mixed carboxylate and azide (or cyanate) bridges: {[Mn (L(1))(0.5)(N(3))(OAc)]·3H(2)O}(n) (1), {[Mn(4)(L(1))(N(3))(8)(H(2)O)(4)(CH(3)OH)(2)]·[L(1)]}(n) (2), and {[Mn(3)(L(1))(NCO)(6)(H(2)O)(4)]·[L(1)]·[H(2)O](2)}(n) (3). The compounds exhibit diverse structures and magnetic properties. In 1, the 1D uniform anionic [Mn(N(3))(COO)(2)](n) chains with the (μ-EO-N(3))(μ-COO)(2) triple bridges (EO = end-on) are interlinked by the dipyridinium L ligands into highly undulated 2D layers. Magnetic studies on 1 reveal that the mixed triple bridges induce antiferromagnetic coupling between Mn(II) ions. Compounds 2 and 3 consist of 1D neutral polymeric chains and co-crystallized zwitterions, and the chains are formed by the L ligands interlinking linear polynuclear units. The polynuclear unit in 2 is tetranuclear with (μ-EO-N(3))(2) as central bridges and (μ-EO-N(3))(2)(μ-COO) as peripheral bridges, while that in 3 is trinuclear with (μ-NCO)(2)(μ-COO) bridges. Magnetic studies demonstrate that the magnetic coupling through the mixed azide/isocyanate and carboxylate bridges in 2 and 3 is antiferromagnetic. An expression of magnetic susceptibility based on a 2-J model for linear tetranuclear systems of classical spins has been deduced and applied to 2.  相似文献   

6.
Zhang XM  Wang YQ  Song Y  Gao EQ 《Inorganic chemistry》2011,50(15):7284-7294
Three transition-metal coordination polymers with azide and/or carboxylate bridges have been synthesized from 4-(3-pyridyl)benzoic acid (4,3-Hpybz) and 4-(4-pyridyl)benzoic acid (4,4-Hpybz) and characterized by X-ray crystallography and magnetic measurements. Compound 1, [Cu(4,3-pybz)(N(3))](n), consists of 2D coordination networks in which the uniform chains with (μ-EO-N(3))(μ-COO) double bridges are cross-linked by the 4,3-pybz ligands. Compound 2, [Cu(2)(4,4-pybz)(3)(N(3))](n)·3nH(2)O, consists of 2-fold interpenetrated 3D coordination networks with the α-Po topology, in which the six-connected dinuclear motifs with mixed (μ-EO-N(3))(μ-COO)(2) (EO = end-on) triple bridges are linked by the 4,4-pybz spacers. Compound 3, [Mn(4,4-pybz)(N(3))(H(2)O)(2)](n), contains 2D manganese(II) coordination networks in which the chains with single μ-EE-N(3) bridges (EE = end-to-end) are interlinked by the 4,4-pybz ligands, and the structure also features a 2D hydrogen-bonded network in which Mn(II) ions are linked by double triatomic bridges, (μ-EE-N(3))(O-H···N) and (O-H···O)(2). Magnetic studies indicated that the mixed azide and carboxylate bridges in 1 and 2 induce ferromagnetic coupling between Cu(II) ions and that 3 features antiferromagnetic coupling through the EE-azide bridge. In addition, compound 1 exhibits antiferromagnetic ordering below 6.2 K and behaves as a field-induced metamagnet. A magnetostructural survey indicates a general trend that the ferromagnetic coupling through the mixed bridges decreases as the Cu-N-Cu angle increases.  相似文献   

7.
一维链状锰配合物的合成、结构及磁性研究   总被引:1,自引:0,他引:1  
合成了邻硝基苯磺酰化丙氨酸配体2-NBS-AlaH (1)(2-NBS-AlaH=邻硝基苯磺酰化丙氨酸)及其锰的配合物[Mn(4,4′-bipy)(H2O)4]2[(4,4′-bipy)2(H2O)3(2-NBS-Ala)4] (2)。通过X-射线单晶衍射测定了其结构:配体通过氢键形成了一维链状结构;配合物2中,4,4′-bipy把锰离子连成了一维链状结构。磁性研究表明,配合物由于分子间的自旋耦合呈现出弱的铁磁性。  相似文献   

8.
Wang ZX  Li XL  Wang TW  Li YZ  Ohkoshi S  Hashimoto K  Song Y  You XZ 《Inorganic chemistry》2007,46(26):10990-10995
A novel zero-dimensional (0D) octacyanotungstate(V)-manganese(II) bimetallic assembly, {[MnII(bipy)2]2(ox)}.{[MnII(bipy)2W(CN)8]2}.4H2O (1) (bipy = 2,2'-bipyridine, ox = C2O42-), was synthesized in methanol solution containing oxalic acid. X-ray analysis shows 1 is crystallized in monoclinic crystal system with C2/c space group and composed of two components of a dimeric Mn2 cation and a quadrate tetrameric Mn2W2 anion. The Mn2 and Mn2W2 moieties are connected by their respective pi-pi stacking to yield the alternative 2D layers, and the 2D layers are linked by hydrogen bonding to form a 3D network. The investigation of the magnetostructural correlation reveals that cyanide and oxalate bridges mediate weak intracluster antiferromagnetic coupling between Mn and W ions and between Mn ions, respectively. Further magnetic measurements and analysis show the spin glasses and intercluster ferromagnetic interaction exist in complex 1.  相似文献   

9.
Reaction of M(NO3)2.xH2O (M = Mn, Co, Ni, Cu, Zn) with 3-diphenylamino-4-hydroxycyclobut-3-ene-1,2-dione (diphenylaminosquarate) produces the neutral polymeric species (M[mu-(C6H5)2NC4O3]2[H2O]2)n [M = Mn (1), Cu (2)]; (M[mu-(C6H5)2NC4O3][(C6H5)2NC4O3][H2O]3)n [M = Co (3), Zn (4)]; and in the case of Ni, the salt [Ni(H2O)6][(C6H5)2NC4O3]2.2H2O (5). Complexes 1 and 2 are isomorphous and crystallize in the monoclinic space group P2(1)/c with, for 1, a = 13.138(1) A, b = 10.900(2) A, c = 9.269(2) A, beta = 96.07(1) degrees, and Z = 2. Complexes 3 and 4 are also isomorphous and crystallize in the space group P2(1)/c with, for 3, a = 13.211(1) A, b = 11.038(1) A, c = 18.748(1) A, beta = 97.75(1) degrees, and Z = 4. The nickel salt, 5, crystallizes in the triclinic space group P1 with a = 6.181(1) A, b = 9.417(1) A, c = 15.486(1) A, alpha = 101.37(1) degrees, beta = 95.51(1) degrees, gamma = 107.57(1) degrees, and Z = 1. In 1 and 2, the metal coordination is octahedral, comprising four mu-1,3-bridging diphenylaminosquarate ligands and two trans aqua ligands. In 3 and 4, the metal coordination is again octahedral, comprising two mu-1,3-bridging and one pendant diphenylaminosquarate ligands, the octahedron being completed by three aqua ligands in a meridional configuration. In 5, the hexaaquanickel(II) ion is linked by O-H...O hydrogen bonds to a pair of diphenylaminosquarate anions. These anion-cation units are linked via included water molecules to form hydrogen-bonded chains. The diphenylaminosquarate ligands in the polymeric complexes 1-4 display multiple-bond localization, a feature which is absent in 5. Complex 1 exhibits weak antiferromagnetic coupling, whereas 2 shows no significant magnetic interactions.  相似文献   

10.
The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes.  相似文献   

11.
The ability of NCNH(-) to construct transition metal coordination polymers and to transmit magnetic coupling was investigated. By introduction of various tetradentate Schiff base ligands (L) and different solvents (S), nine NCNH(-)-bridged manganese(III) coordination complexes were obtained. Their structures can be divided into three types: I) NCNH-bridged chains built on mononuclear [Mn(III)(L)] units, [Mn(III)(L)(mu(1,3)-NCNH)](n) (L=5-Brsalen (1), 5-Clsalen (2)); II) NCNH-bridged chains built on dinuclear [Mn(III) (2)(L)(2)] units, complexes 3-8, [Mn(III) (2)(L)(2)(mu(1,3)-NCNH)]ClO(4)S (L=salen, 5-Fsalen, 5-Clsalen, 5-OCH(3)salen; S=CH(3)OH or C(2)H(5)OH); III) NCNH-bridged Mn(III) dimers linked by hydrogen bonds into a 1D polymer, {[Mn(III)(3-OCH(3)salen)(H(2)O)](2)(mu(1,3)-NCNH)}ClO(4) x 0.5 H(2)O (9, salen=N,N'-bis(salicylidene)-1,2-diaminoethane). In these complexes, the N[triple chemical bond]C--NH(-) resonance structure dominates the bonding mode of the NCNH(-) ligand adopting the mu(1,3)-bridging mode. Magnetic characterization shows that the asymmetric NCNH(-) bridge transmits antiferromagnetic interaction between Mn(III) ions and often favors the weak ferromagnetism caused by spin canting in these one-dimensional chains. However, these complexes exhibit different magnetic behaviors at low temperatures.  相似文献   

12.
Solvothermal reactions of 3,5-dimethyl-2,6-bis(3-(pyrid-2-yl)-1,2,4-triazolyl) pyridine (L), 1,4-benzendicarboxylic acid (H2bdc), and transitional metal cations of MII (M = Mn, Co, Cd) in the presence of oxalic acid (H2ox) afford three novel supramolecular polymers (CPs), namely, {[M2(ox)(L)2][bdc][M2(Hox)2(OH)2(H2O)4].3H2O}n (M=Mn for 1, Co for 2, Cd for 3). Single-crystal X-ray diffraction analysis reveals that complexes 1-3 are isostructural and the 3D supramolecular structure was connected through non-covalent interactions. With the help of H2ox, the L ligands cheated with center atoms forming a butterfly [M2(ox)(L)2]2+ building block. The bdc2- ligand linked with the unprecedented [M2(Hox)2(OH)2(H2O)4] units through strong O-H…O hydrogen bonds forming a zigzag chain, which are further connected through π…π interactions between L and bdc2- ligands to form a 3D supramolecular structure. Moreover, elemental analyses, IR, thermogravimetric, PXRD and luminescence have been investigated.  相似文献   

13.
The isostructural heterometallic complexes [Ln(III)(2)Mn(III)(2)O(2)(ccnm)(6)(dcnm)(2)(H(2)O)(2)] (Ln = Eu (1Eu), Gd (1Gd), Tb (1Tb), Er (1Er); ccnm = carbamoylcyanonitrosomethanide; dcnm = dicyanonitrosomethanide) have been synthesised and structurally characterised. The in situ transition metal promoted nucleophilic addition of water to dcnm, forming the derivative ligand ccnm, plays an essential role in cluster formation. The central [Ln(III)(2)Mn(III)(2)(O)(2)] moiety has a "butterfly" topology. The coordinated aqua ligands and the NH(2) group of the ccnm ligands facilitate the formation of a range of hydrogen bonds with the lattice solvent and neighbouring clusters. Magnetic measurements generally reveal weak intracluster antiferromagnetic coupling, except for the large J(MnMn) value in 1Gd. There is some evidence for single molecule magnetic (SMM) behaviour in 1Er. Comparisons of the magnetic properties are made with other recently reported butterfly-type {Ln(III)(x)M(III)(4-x) (d-block)} clusters, x = 1, 2; M = Mn, Fe.  相似文献   

14.
The syntheses, crystal structures, and magnetochemical characterization are reported for three new mixed-valent Mn clusters [Mn(8)O(3)(OH)(OMe)(O(2)CPh)7(edte)(edteH(2))](2)CPh) (1), [Mn(12)O(4)(OH)(2)(edte)(4)C(l6)(H(2)O)(2)] (2), and [Mn(20)O(8)(OH)(4)(O(2)CMe)(6)(edte)(6)](ClO(4))(2) (3) (edteH(4) = (HOCH(2)CH(2))(2)NCH(2)CH(2)N(CH(2)CH(2)OH)(2) = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine). The reaction of edteH(4) with Mn(O(2)CPh)(2), MnCl(2), or Mn(O(2)CMe)(2) gives 1, 2, and 3, respectively, which all possess unprecedented core topologies. The core of 1 comprises two edge-sharing [Mn(4)O(4)] cubanes connected to an additional Mn ion by a micro(3)-OH- ion and two alkoxide arms of edteH(22-). The core of 2 consists of a [Mn(12)(micro(4-)O)(4)](24+) unit with S4 symmetry. The core of 3 consists of six fused [Mn(4)O(4)] cubanes in a 3 x 2 arrangement and linked to three additional Mn atoms at both ends. Variable-temperature, solid-state dc and ac magnetization (M) studies were carried out on complexes 1-3 in the 5.0-300 K range. Fitting of the obtained M/Nmicro(B) vs H/T data by matrix diagonalization and including only axial zero-field splitting (ZFS) gave ground-state spin (S) and axial ZFS parameter (D) of S = 8, D = -0.30 cm-1 for 1, S = 7, D = -0.16 cm-1 for 2, and S = 8, D = -0.16 cm-1 for 3. The combined work demonstrates that four hydroxyethyl arms on an ethylenediamine backbone can generate novel Mn structural types not accessible with other alcohol-based ligands.  相似文献   

15.
A single crystal of the title compound [MnII6(H2O)9[W(V)(CN)8]4 x 13H2O]n was synthesized in a hot aqueous solution containing octacyanotungstate, Na3[W(CN)8] x 3H2O, and Mn(ClO4)2 x 6H2O. The compound crystallized in the monoclinic system, space group P2(1)/c with cell constants a = 15.438(2) A, b = 14.691(2) A, c = 33.046(2) A, beta = 94.832(9) degrees, and Z = 4. The crystal consists of a W(V)-CN-MnII linked three-dimensional network [[MnII(H2O)]3[MnII(H2O)2]3[W(V)(CN)8]4]n and H2O molecules as crystal solvates. There are two kinds of W sites: one is close to a dodecahedron geometry with six bridging and two terminal CN ligands; the other is close to a bicapped trigonal prism with seven bridging and one terminal CN ligands. The field-cooled magnetization measurement showed that the compound exhibits a spontaneous magnetization below Tc = 54 K. Further magnetization measurements on the field dependence reveal it to be a ferrimagnet where all of the MnII ions are antiparallel to all the W(V) ions.  相似文献   

16.
A series of [3 x 3] Mn(II)(9), antiferromagnetically coupled, alkoxide-bridged, square grid complexes, derived from a group of "tritopic" dihydrazide ligands, is described. The outer ring of eight Mn(II) centers in the grids is isolated magnetically from the central Mn(II) ion, leading to an S = 0 ground state for the ring, and an S = 5/2 ground state overall in each case. Exchange in the Mn(II)(8) ring can be represented by a 1D chain exchange model. Rich electrochemistry displayed by these systems has led to the production of Mn(II)/Mn(III) mixed-oxidation-state grids by both electrochemical and chemical means. Structures are reported for [Mn(9)(2poap)(6)](C(2)N(3))(6).10H(2)O (1), [Mn(9)(2poap)(6)](2)[Mn(NCS)(4)(H(2)O)](2)(NCS)(8).10H(2)O (2), [Mn(9)(2poapz)(6)](NO(3))(6).14.5H(2)O (3), [Mn(9)(2popp)(6)](NO(3))(6).12H(2)O (4), [Mn(9)(2pomp)(6)](MnCl(4))(2)Cl(2).2CH(3)OH.7H(2)O (5), and [Mn(9)(Cl2poap)(6)](ClO(4))(9).7H(2)O (6). Compound 1 crystallized in the tetragonal system, space group P4(2)/n, with a = 21.568(1) A, c = 16.275(1) A, and Z = 2. Compound 2 crystallized in the triclinic system, space group P, with a = 25.043(1) A, b = 27.413(1) A, c = 27.538(2) A, alpha = 91.586(2) degrees, beta = 113.9200(9) degrees, gamma = 111.9470(8) degrees, and Z = 2. Compound 3 crystallized in the triclinic system, space group P, with a = 18.1578(12) A, b = 18.2887(12) A, c = 26.764(2) A, alpha = 105.7880(12) degrees, beta = 101.547(2) degrees, gamma = 91.1250(11) degrees, and Z = 2. Compound 4 crystallized in the tetragonal system, space group P4(1)2(1)2, with a = 20.279(1) A, c = 54.873(6) A, and Z = 4. Compound 5 crystallized in the tetragonal system, space group I, with a = 18.2700(2) A, c = 26.753(2) A, and Z = 2. Compound 6 crystallized in the triclinic system, space group P, with a = 19.044(2) A, b = 19.457(2) A, c = 23.978(3) A, alpha = 84.518(3) degrees, beta = 81.227(3) degrees, gamma = 60.954(2) degrees, and Z = 2. Preliminary surface studies on Au(111), with a Mn(II) grid complex derived from a sulfur-derivatized ligand, indicate monolayer coverage via gold-sulfur interactions, and the potential for information storage at high-density levels.  相似文献   

17.
Tsao CP  Sheu CY  Nguyen N  Lii KH 《Inorganic chemistry》2006,45(16):6361-6364
Two isostructural transition-metal oxalatophosphonates, Na2M3(C2O4)3(CH3PO3H)2 (M = Fe(II) and Mn(II)), have been synthesized by using a low-melting-point eutectic mixture of choline chloride and malonic acid as a solvent and characterized by single-crystal X-ray diffraction and 57Fe M?ssbauer spectroscopy. The 3D framework structure consists of a corner-sharing octahedral trimer that is linked with other trimers through two distinct oxalate ligands with unusual linkage types, phosphonate tetrahedra, and H bonds to form infinite channels along the [101] direction where the Na+ cations are located. They are the first examples for the use of an ionic liquid as a solvent in the synthesis of metal oxalatophosphonates. Crystal data for the Fe compound follow: monoclinic, P2(1)/n (No. 14), a = 5.8063(1) A, b = 10.3867(3) A, c = 14.8094(4) A, beta = 96.926(1) degrees , and Z = 2. Crystal data for the Mn compound are the same as those for the Fe compound except a = 5.8734(9) A, b = 10.557(2) A, c = 14.863(2) A, and beta = 96.691(2) degrees .  相似文献   

18.
A series of mixed-ligand coordination complexes, namely [Zn(CA)(2)(BIE)] (1), [Zn(OX)(BIE)].H(2)O (2), [Zn(2)(m-BDC)(2)(BIE)(2)] (3), [Cd(m-BDC)(BIE)] (4), [Cd(5-OH-m-BDC)(BIE)] (5), [Zn(5-OH-m-BDC)(BIE)] (6), [Zn(2)(p-BDC)(2)(BIE)(2)].2.5H(2)O (7), [Cd(3)(p-BDC)(3)(BIE)] (8), [Cd(3)(BTC)(2)(BIE)(2)].0.5H(2)O (9) and [Zn(BTCA)(0.5)(BIE)] (10), where CA = cinnamate anion, OX = oxalate anion, m-BDC = 1,3-benzenedicarboxylate anion, 5-OH-m-BDC = 5-OH-1,3-benzenedicarboxylate anion, p-BDC = 1,4-benzenedicarboxylate anion, BTC = 1,3,5-benzenetricarboxylate anion, BTCA = 1,2,3,4-butanetetracarboxylate anion, and BIE = 2,2'-bis(1H-imidazolyl)ether, were synthesized under hydrothermal conditions. In 1, a pair of BIE ligands bridge adjacent Zn(II) atoms to give a centrosymmetric dimer. In 2 and 3, BIE ligands connect Zn(II)-carboxylate chains to form hexagonal honeycomb 6(3)-hcb and square 4(4)-sql layers, respectively. In 4 and 5, m-BDC and 5-OH-m-BDC bridge Cd(II) atoms to give dimeric units, respectively, which are further linked by BIE ligands to form sql nets. In 6, the BIE ligands extend the Zn(II)-carboxylate chains into 2D sinusoidal-like sql nets. The undulated sql nets polycatenate each other in the parallel manner with DOC (degree of catenation) = 2, yielding a rare 2D --> 3D parallel polycatenation net. In 7, the BIE and p-BDC ligands link the Zn(ii) atoms to give a rare 3-fold interpenetrated 3-connected 10(3)-ths net. 8 contains unusual edge-sharing polyhedral rods formed by [Cd(3)(CO(2))(6)] clusters. Each rod is connected by the benzene rings of p-BDC in four directions into a simple alpha-Po topology. In 9, two kinds of different 2D Cd-BTC layers are alternately linked to each other by sharing Cd(ii) centers to form a 3D framework, which is further linked by two kinds of BIE ligand to produce a complicated 3D polymeric structure. 10 possesses a unique (3,4)-connected 3D framework with (8(3))(2)(8(5).10) topology. The structural differences described indicate the importance of carboxylate ligands and metals in the framework formation of coordination complexes. The infrared spectra, thermogravimetric and luminescent properties were also investigated in detail for the compounds.  相似文献   

19.
A novel end-to-end azido-bridged polynuclear Schiff-base copper(H) complex,[Cu(C12H15Br2N2O)(N3)]n, was prepared and characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction.The crystal belongs to the orthorhombic system, space group Pbcn with a = 24.588(5), b = 10.377(2), c = 13.022(3)(A),V= 3322.6(12)(A)3, Z = 8, Dc = 1.874 g/cm3, Mr= 468.65, λ(MoKα) = 0.71073 (A),μ= 6.130 mm-1, F(000) = 1832, R = 0.0637 and wR = 0.1176.The Cu atom in the complex is five-coordinated in a square pyramidal geometry by three donoratoms of the Schiff-base ligand, and two N atoms from two bridging azide ligands.The [2,4-dibromo-6-[(3-dimethylaminopropylimino)methyl]phenolato]copper(Ⅱ) units are linked by the bridging azide ligands, giving zigzag polymeric chains with backbones of the [-Cu-N-N-N-Cu]n type running along the b axis.  相似文献   

20.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号