首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
纳米雄黄与脂质体仿生膜的相互作用研究   总被引:1,自引:0,他引:1  
沈星灿  金涛  谢俊  梁宏  严喻 《中国科学B辑》2009,39(9):926-932
本工作以卵磷脂与胆固醇组成的磷脂小单层脂质体(small unilamelarvesicles,suv)作为仿生膜的简单模型,采用表面等离子共振技术(SPR)、荧光偏振、拉曼(Raman)光谱、核磁共振(NMR)及原子力显微镜(AFM)研究纳米雄黄与SUV仿生膜的相互作用,证实了磷脂是纳米雄黄作用的关键靶分子.随纳米雄黄结合,SUV仿生膜的相对粘度聃值增大,膜的流动性减小.Raman光谱数据计算表明,作用后膜的纵向有序性参数s。。及横向有序性参数Slat值增大,说明纳米雄黄的结合使磷脂膜的脂酰基链全反式构型比例上升,膜的流动性减小.由Raman光谱和引PNMR结果推测,磷脂极性头部是纳米雄黄与磷脂的主要结合位点。AFM实时观测,纳米雄黄通过在膜表面打“孔”或“洞”的方式,损坏磷脂膜.  相似文献   

2.
The adsorption from phospholipid liposome solutions (1.2%) and phospholipid stabilized oil-in-water emulsions (20% purified soybean oil) with the same phospholipid liposome concentration, has been followed by means of a quartz crystal microbalance allowing the simultaneous determination of changes in resonance frequency and energy dissipation. Both the fundamental resonance frequency and the third overtone were used for following the interfacial processes. The adsorption from the liposome solution resulted in formation of a phospholipid bilayer with an additional and incomplete outer layer of liposomes. The outer layer was removed by dilution leaving a bilayer of phospholipids on the surface. The adsorption process observed from the concentrated emulsion solution was considerably more complex. A slow spreading process that also resulted in some expulsion of material from the interface followed the rapid initial adsorption of emulsion droplets. After rinsing with water a phospholipid bilayer was retained on the surface.  相似文献   

3.
Quartz crystal microbalance(QCM) and cyclic voltammetry(CV) were used to characterize the monolayer of cytochrome c(Cyt c), which was adsorbed on gold film modified with alkanethiol mixed monolayer. A direct comparison of protein surface coverages calculated from QCM and cyclic voltammetric measurements illustrates that the ratio of the electroactive Cyt c to the total surface-confined Cyt cis 34%, which suggests that the orientation is a main factor affecting the electroactivity of Cyt c. Moreover, surface plasmon resonance(SPR) measurement combined with CV “in situ” was used to investigate the conformational change of Cyt c in the redox process. Besides, Au nanoparticles(Au NPs) were adsorbed on the surface of Cyt c. The result indicates that Au NPs promote electron transfer between Cyt c and the gold electrode, and SPR result suggests Au NPs enhance SPR signal.  相似文献   

4.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   

5.
Multimodal imaging is highly desirable for accurate diagnosis because it can provide complementary information from each imaging modality. In this study, a sol-gel reaction of tantalum(V) ethoxide in a microemulsion containing Fe(3)O(4) nanoparticles (NPs) was used to synthesize multifunctional Fe(3)O(4)/TaO(x) core/shell NPs, which were biocompatible and exhibited a prolonged circulation time. When the NPs were intravenously injected, the tumor-associated vessel was observed using computed tomography (CT), and magnetic resonance imaging (MRI) revealed the high and low vascular regions of the tumor.  相似文献   

6.
In this letter, we report on the digestion of starch, when present as a composite with Au nanoparticles (NPs), by alpha-amylase. It has been observed that the rate of digestion of free starch and that in the composite were identical. Also, the well-established iodine test could be carried out to investigate the kinetics in the presence of Au NPs. The investigations revealed that following the digestion of starch in the composite the NPs were released and subsequently attached to the enzyme only and not to the degraded products of starch. Also, the enzyme attached to NPs, following digestion, retained its catalytic activity. The particle sizes of the NPs were not affected in the process because no agglomeration was observed. Experimental observations indicated the possibility of oriented attachment of alpha-amylase to the NPs in comparison to amyloglucosidase, another digestive enzyme. Finally, we observed a change in the surface plasmon resonance (SPR) of the NPs following the digestion of starch in the composite, and thus we could demonstrate that the SPR of the NPs could be used as a direct probe for monitoring the digestion of the composite by the enzyme.  相似文献   

7.
The purpose of this paper is to fabricate novel nanoparticles (NPs) from a single disulfide bond-bridged block copolymer poly(hydroxyethyl methacrylate)-S-S-polycaprolactone (PHEMA-S-S-PCL). The novel biomaterial was synthesized by ring-opening polymerization and reversible addition–fragmentation chain transfer polymerization. The cargo-free NPs were fabricated with the solvent evaporation method, and studies on NPs' characterizations were carried out. The hydrogen nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy spectra confirmed the synthesis of PHEMA-S-S-PCL copolymer. Thermo-gravimetric analysis curves indicated that the obtained PHEMA-S-S-PCL copolymer had good thermostability. Transmission electron microscopy and dynamic light scatter results suggested that the cargo-free NPs were in round shapes with an average diameter of 103.6 ± 0.12 nm. The low critical micelle concentration of cargo-free NPs (7.9 × 10?4 mg/ml) indicated that these NPs would keep their spherical shapes after being attenuated by abundant liquid (e.g., blood or body fluid). Furthermore, these NPs showed high stability at the presence of bovine serum albumin. Therefore, it could be speculated that these NPs would not be absorbed by proteins in blood, and they could be used as a candidate carrier for drug delivery.  相似文献   

8.
The optical absorption spectra of water silica sols containing nanoparticles (NPs) of metals (Ag, Pd, Fe, and Pt) are investigated. Silica sols are obtained from natural hydrothermal solutions via membrane concentration (ultrafiltration). Water sols of silica with specific sizes, pH values, ζ potentials of SiO2 NP surfaces, and low concentrations of SiO2 NPs are used. Plasmon resonance in optical absorption spectra is used to study the interaction between silica and metal NPs. Parameters of plasmon resonance (position, height, and half-width of optical absorption bands), from which the degree of interaction is assessed, are determined. Relationships between the optical properties of the surfaces of nanoparticle-size silica particles, the method of their production, and the effect of adsorbed metal particles on these properties are established.  相似文献   

9.
Nanoparticles of cadmium telluride (CdTe) coated with thioglycolic acid (TGA) were prepared in the water phase. The interaction between CdTe nanoparticles (NPs) and lysozyme (Lyz) was investigated by fluorescence and circular dichroism (CD) spectroscopy at pH 7.40. It was proved that the fluorescence quenching of Lyz by CdTe NPs was mainly a result of the formation of CdTe-Lyz complex. By the fluorescence quenching results, the Stern-Volmer quenching constant (K(SV)), binding constant (Ka) and binding sites (n) were calculated. The binding distance (r) between Lyz (the donor) and CdTe NPs (the acceptor) was obtained according to fluorescence resonance energy transfer (FRET). Gradual addition of CdTe NPs to the solution of Lyz led to a marked increase in fluorescence polarization (P) of Lyz, which indicated that CdTe NPs were located in a restricted environment of Lyz. The effect of CdTe NPs on the conformation of Lyz has been analyzed by means of synchronous fluorescence spectra and CD spectra, which provided the evidence that the secondary structure of Lyz has been changed by the interaction of CdTe NPs with Lyz.  相似文献   

10.
Anisotropic silver nanoparticles (NPs) were successfully employed to color the wool fabrics in this study. The modified wool fabrics exhibited brilliant colors due to the localized surface plasmon resonance (LSPR) properties of silver NPs. The colors of wool fabrics altered with the morphologies of silver NPs. These modified wool fabrics were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicated that anisotropic silver NPs were effectively assembled on the surface of wool fibers when the solution pH and temperature was about 4 and 40°C, respectively. This assembling of silver NPs on the wool fibers was realized by the electrostatic interaction between wool fibers and silver NPs. This technique was also applied to gold NPs. The fabrics treated with anisotropic silver NPs showed high antibacterial activity against the bacteria of Escherichia coli. This study opens a new approach to color and functionalize conventional textile materials.  相似文献   

11.
In this contribution, a plasmon resonance light scattering (PRLS) detection method of ferulic acid (FA) is proposed based on the formation of silver nanoparticles (NPs). It was found that, FA acted as a reducing agent in alkaline medium and could be oxidized by AgNO3, resulting in the formation of silver NPs. The formed silver NPs, which were identified by measuring the plasmon resonance absorption spectra, PRLS spectra and transmission electron microscopy (TEM) image, display characteristic plasmon resonance optical absorption and PRLS band in the visible region. It was found that the PRLS intensity, which could be easily measured using a common spectrofluorometer, was in proportion to the concentration of FA over the range from 0.2 to 2.0 μmol l−1 with the corresponding limits of determination (3σ) of 15.2 nmol l−1. With that, ferulate sodium injection samples have been detected with R.S.D. lower than 3.0% and recoveries over the range of 101.2–104.5%. On the other hand, the present reaction maybe provides the basis of an environmentally friendly approach for the synthesization of silver NPs.  相似文献   

12.
Iron-platinum alloy nanoparticles (FePt NPs) are extremely promising candidates for the next generation of contrast agents for magnetic resonance (MR) diagnostic imaging and MR-guided interventions, including hyperthermic ablation of solid cancers. FePt has high Curie temperature, saturation magnetic moment, magneto-crystalline anisotropy, and chemical stability. We describe the synthesis and characterization of a family of biocompatible FePt NPs suitable for biomedical applications, showing and discussing that FePt NPs can exhibit low cytotoxicity. The importance of engineering the interface of strongly magnetic NPs using a coating allowing free aqueous permeation is demonstrated to be an essential parameter in the design of new generations of diagnostic and therapeutic MRI contrast agents. We report effective cell internalization of FePt NPs and demonstrate that they can be used for cellular imaging and in vivo MRI applications. This opens the way for several future applications of FePt NPs, including regenerative medicine and stem cell therapy in addition to enhanced MR diagnostic imaging.  相似文献   

13.
Magnetic 8 nm Fe(3)O(4) nanoparticles (NPs) were synthesized and modified with dopamine (DPA) and polyethylene glycol (PEG) diacid. The water soluble Fe(3)O(4)-DPA-PEG NPs were then conjugated with the fluorescent Eu(iii) complex of tris(dibenzoylmethane)-5-amino-1,10-phenanthroline (BMAP), giving an Fe(3)O(4)-DPA-PEG-BMAP-Eu NP conjugate. The conjugate was both colloidally and chemically stable in phosphate buffered solutions and could be used as a probe for magnetic resonance and fluorescent imaging.  相似文献   

14.
Palm pollen (PP) has been widely used in nutrition, pharmaceutical and cosmetic industries. In the present study, we explored the potential of PP in the synthesis of a silver nanoparticle (Ag NP). PP was used as both reducing and stabilizing agent. The Ag/PP nanocomposite was examined by field emission electron microscopy, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet spectroscopy and zeta potential measurement. The biosynthesized NPs showed surface plasmon resonance centered at 425 nm with an average particle size measured to be 23 nm and a zeta potential of ?30.9 mV. Prominent FT-IR signals were obtained and ascribed to phenolic and carbohydrate compounds involved in the formation of the Ag NPs, and proteins which participated in stabilization of the Ag NPs. The biologically synthesized Ag NPs were found to be extremely effective against E. coli (13.8 ± 0.25 mm) with a minimum inhibitory concentration of 20 µg/mL. Thus, such biosynthesized Ag NPs can be used in medicinal applications.  相似文献   

15.
In this work we present a novel route to cover large surfaces with metal and oxide nanoparticles (NPs) by growing and annealing of metallic bilayers. We have used this method to fabricate ensembles of Au and α-Fe2O3 NPs on silica substrates from Fe/Au bilayers. The morphology of the hybrid nanostructures and the presence of defects and disorder can be tuned through the processing parameters as the initial film thickness and the annealing conditions. The proximity effects between both types of NPs alter their physical properties. In particular, we observe that the presence of α-Fe2O3 NPs modifies the surface plasmon resonance of Au NPs.  相似文献   

16.
A magnetic, sensitive, and selective fluorescence resonance energy transfer (FRET) probe for detection of thiols in living cells was designed and prepared. The FRET probe consists of an Fe(3)O(4) core, a green-luminescent phenol formaldehyde resin (PFR) shell, and Au nanoparticles (NPs) as FRET quenching agent on the surface of the PFR shell. The Fe(3)O(4) NPs were used as the core and coated with green-luminescent PFR nanoshells by a simple hydrothermal approach. Au NPs were then loaded onto the surface of the PFR shell by electric charge absorption between Fe(3)O(4)@PFR and Au NPs after modifying the Fe(3)O(4)@PFR nanocomposites with polymers to alter the charge of the PFR shell. Thus, a FRET probe can be designed on the basis of the quenching effect of Au NPs on the fluorescence of Fe(3)O(4)@PFR nanocomposites. This magnetic and sensitive FRET probe was used to detect three kinds of primary biological thiols (glutathione, homocysteine, and cysteine) in cells. Such a multifunctional fluorescent probe shows advantages of strong magnetism for sample separation, sensitive response for sample detection, and low toxicity without injury to cellular components.  相似文献   

17.
The near-field coupling interactions between surface plasmon modes of neighboring metal nanoparticles (NPs) are investigated in thin films of oligothiophene-linked Au NPs. The oligothiophene linker facilitates near-field coupling between adjacent NPs, and disruption of the conjugation in the oligothiophene by chemical oxidation leads to a decrease in surface plasmon resonance (SPR) coupling between neighboring particles. The SPR coupling between NPs was found to be highly dependent on the dielectric constant of the medium that the films are exposed to, where a higher dielectric medium leads to weaker coupling. The dependence of the SPR coupling on the dielectric constant of the medium is explained using electrodynamic theory.  相似文献   

18.
In this work, we used a model assay system (polyclonal human IgG–goat antihuman IgG) to elucidate some of the key factors that influence the analytical performance of bioassays that employ metal-enhanced fluorescence (MEF) using silver nanoparticles (NPs). Cy5 dye was used as the fluorescent label, and results were compared with a standard assay performed in the absence of NPs. Two sizes of silver NPs were prepared with respective diameters of 60 ± 10 and 149 ± 16 nm. The absorption spectra of the NPs in solution were fitted accurately using Mie theory, and the dipole resonance of the 149-nm NPs in solution was found to match well with the absorption spectrum of Cy5. Such spectral matching is a key factor in optimizing MEF. NPs were deposited uniformly and reproducibly on polyelectrolyte-coated polystyrene substrates. Compared to the standard assay performed without the aid of NPs, significant improvements in sensitivity and in limit of detection (LOD) were obtained for the assay with the 149-nm NPs. An important observation was that the relative enhancement of fluorescence increased as the concentration of antigen increased. The metal-assisted assay data were analyzed using standard statistical methods and yielded a LOD of 0.086 ng/mL for the spectrally matched NPs compared to a value of 5.67 ng/mL obtained for the same assay in the absence of NPs. This improvement of ∼66× in LOD demonstrates the potential of metal-enhanced fluorescence for improving the analytical performance of bioassays when care is taken to optimize the key determining parameters.   相似文献   

19.
In this study, a new type of localized surface plasmon resonance (LSPR) sensing substrate for phosphopeptides was explored. It has been known that LSPR response for target species is larger in the near-infrared region (NIR) than in the visible region of the electromagnetic spectrum. Several types of noble metal nanoparticles (NPs) with NIR absorption capacities have been previously demonstrated as effective LSPR-sensing nanoprobes. Herein, we demonstrate a straightforward approach with improved sensitivity by simply using layer-by-layer (LBL) spherical Au NPs self-assembled on glass slides as the LSPR-sensing substrates that are responsive in the NIR region of the electromagnetic spectrum. The modified glass slide acquired an LSPR absorption band in the NIR, which resulted from the dipole–dipole interactions between Au NPs. To enable the chip to sense phosphopeptides, the surface of the glass chip was spin-coated with thin titania film (TiO2-Glass@Au NPs). Absorption spectrophotometry was employed as a detection tool. Tryptic digest of α-casein was used as a model sample. The feasibility of using the new LSPR approach for detecting a potential risk factor leading to cancers (i.e., phosphorylated fibrinopeptide A) directly from human serum samples was demonstrated. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to confirm the results.  相似文献   

20.
Two PEGylated BODIPY which could self-assemble into nanoparticles were synthesized via multicomponent Passerini reaction for cellular imaging and photodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号