首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using Monte Carlo simulation methods in the grand canonical and semigrand canonical ensembles, we study the phase behavior of two-dimensional symmetrical binary mixtures of Lennard-Jones particles subjected to a weakly corrugated external field of a square symmetry. It is shown that the both vapor-liquid condensation and demixing transition in the liquid phase are not appreciably affected by a weakly corrugated external field. On the other hand, even a weakly corrugated external field considerably influences the structure of solid phases and the liquid-solid transition. In particular, the solid phases are found to exhibit uniaxially ordered distorted hexagonal structure. The triple point temperature increases with the corrugation of the external field, while the triple point density becomes lower when the surface corrugation increases. The changes in the location of the triple point are shown to lead to the changes of the phase diagram topology. It is also demonstrated that the solid phase undergoes a demixing transition, which is also very slightly affected by the weakly corrugated external potential. The demixing transition in the solid phase is shown to belong to the universality class of the Ising model.  相似文献   

2.
Monte Carlo simulations in the grand canonical ensemble, the multiple-histogram analysis and finite-size scaling techniques have been used to study a phase behavior of trimer BAB on a square lattice. The systems with the same energies u(AA) = u(BB) and different strengths of interactions between unlike segments are considered. The AB-contacts are energetically unprofitable. There are two phase transitions: the first-order vapor-liquid transition and the second-order structural transition in the supercritical fluid. The phase diagram topology depends on the energy u(AB). The crossover between the tricritical point phase diagram topology and the critical end phase diagram topology is found. It is demonstrated that the transition to the ordered strip-like phase is non-universal.  相似文献   

3.
Grand canonical transition matrix Monte Carlo simulations are used to investigate the phase behavior of the model argon on solid carbon dioxide system introduced by Ebner and Saam (Phys. Rev. Lett. 1977, 38, 1486). Our results indicate that the system exhibits first-order prewetting transitions at temperatures above a wetting temperature of Tw = 0.598(5) and below a critical prewetting temperature of Tpwc approximately 0.92. The wetting transition is identified by determining the temperature at which the difference between the bulk vapor-liquid and prewetting saturation chemical potentials goes to zero. Coexistence is directly located at a given temperature by obtaining a density probability distribution from simulation data and utilizing histogram reweighting to determine the conditions that satisfy phase coexistence. Structural properties of the adsorbed films are also examined.  相似文献   

4.
Liquid-liquid and liquid-vapor coexistence regions of various water models were determined by Monte Carlo (MC) simulations of isotherms of density fluctuation-restricted systems and by Gibbs ensemble MC simulations. All studied water models show multiple liquid-liquid phase transitions in the supercooled region: we observe two transitions of the TIP4P, TIP5P, and SPCE models and three transitions of the ST2 model. The location of these phase transitions with respect to the liquid-vapor coexistence curve and the glass temperature is highly sensitive to the water model and its implementation. We suggest that the apparent thermodynamic singularity of real liquid water in the supercooled region at about 228 K is caused by an approach to the spinodal of the first (lowest density) liquid-liquid phase transition. The well-known density maximum of liquid water at 277 K is related to the second liquid-liquid phase transition, which is located at positive pressures with a critical point close to the maximum. A possible order parameter and the universality class of liquid-liquid phase transitions in one-component fluids are discussed.  相似文献   

5.
The vapor-liquid coexistence boundaries of fluids composed of particles interacting with highly directional patchy interactions, in addition to an isotropic square well potential, are evaluated using grand canonical Monte Carlo simulations combined with the histogram reweighting and finite size scaling methods. We are motivated to study this more complicated model for two reasons. First, it is established that the reduced widths of the metastable vapor-liquid coexistence curve predicted by a model with only isotropic interparticle interactions are much too narrow when compared to the experimental phase behavior of protein solutions. Second, interprotein interactions are well known to be "patchy." Our results show that at a constant total areal density of patches, the critical temperature and the critical density increase monotonically with an increasing number of uniformly spaced patches. The vapor-liquid coexistence curves plotted in reduced coordinates (i.e., the temperature and the density scaled by their respective critical values) are found to be effectively independent of the number of patches, but are much broader than those found for the isotropic models. Our findings for the reduced width of the coexistence curve are almost in quantitative agreement with the available experimental data for protein solutions, stressing the importance of patchiness in this context.  相似文献   

6.
Morphology control in semi-interpenetrating polymer networks has been achieved by means of a two-step process, separating morphology formation and polymerization/crosslinking. Phase textures formed during spinodal liquid/liquid demixing of a solution of atactic polystyrene in methacrylate monomers were arrested by thermoreversible gelation of the polymer-rich phase as this phase passed its glass transition temperature. The phase separated structure was permanently stabilized by low-temperature crosslinking ultraviolet (UV) polymerization of the methacrylate monomer, and studied by transmission electron microscopy. Thus, it was directly observed how the initial demixing process depended on the initial viscosity of the polymer solution and the mode of quenching. Arrest of the earliest stage of spinodal demixing resulted in separated domains of 0.05–0.08 μm thickness, which were separated by a distance of the spinodal wavelength λ. A cocontinuous network only developed in a relatively late stage of demixing. ©1995 John Wiley & Sons, Inc.  相似文献   

7.
The influence of liquid–liquid demixing, solid–liquid demixing, and vitrification on the membrane morphologies obtained from several polylactide-solvent-nonsolvent systems has been investigated. The polymers investigated were the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide (PDLLA). The solvent-nonsolvent systems used were dioxane-water, N-methyl pyrrolidone-water and dioxane-methanol. For each of these systems it was attempted to relate the membrane morphology to the ternary phase diagram at 25°C. It was demonstrated that for the amorphous poly-DL-lactide the intersection of a glass transition and a liquid–liquid miscibility gap in the phase diagram was a prerequisite for the formation of stable membrane structures. For the semicrystalline PLLA a wide variety of morphologies could be obtained ranging from cellular to spherulitical structures. For membrane-forming combinations that show delayed demixing, trends expected on the basis of phase diagrams were in reasonable agreement with the observed membrane morphologies. Only for the rapidly precipitating system PLLA-N-methyl pyrrolidone-water were structures due to liquid–liquid demixing obtained when structures due to solid–liquid demixing were expected. Probably, rapid precipitation conditions promote solid–liquid demixing over liquid–liquid demixing, because the activation energy necessary for liquid–liquid demixing is lower than that for crystallization. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Gibbs ensemble Monte Carlo simulations were used to calculate the vapor-liquid and vapor-solid coexistence curves for benzene using two simple united-atom models. An extension of the Gibbs ensemble method that makes use of an elongated box containing a slab of the condensed phase with a vapor phase along one axis was employed for the simulations of the vapor-solid equilibria and the vapor-liquid equilibria at very low reduced temperatures. Configurational-bias and aggregation-volume-bias Monte Carlo techniques were applied to improve the sampling of particle transfers between the two simulation boxes and between the vapor and condensed-phase regions of the elongated box. An isotropic united-atom representation with six Lennard-Jones sites at the positions of the carbon atoms was used for both force fields, but one model contained three additional out-of-plane partial charge sites to explicitly represent benzene's quadrupolar interactions. Both models were fitted to reproduce the critical temperature and density of benzene and yield a fair representation of the vapor-liquid coexistence curve. In contrast, differences between the models are very large for the vapor-solid coexistence curve. In particular, the lack of explicit quadrupolar interactions for the 6-site model greatly reduces the energetic differences between liquid and solid phases, and this model yields a triple point temperature that is about a factor of 2 too low. In contrast, the 9-site model predicts a triple point of benzene at T = 253 +/- 6 K and p = 2.3 +/- 0.8 kPa in satisfactory agreement with the experimental data (T = 278.7 K and p = 4.785 kPa).  相似文献   

9.
10.
受限条件下CO2-CH4体系的相平衡性质对化工工艺过程的设计具有非常重要的意义.采用Gibbs系综Monte Carlo模拟,对220K下CO2-CH4体系在主体相和受限狭缝中的相平衡性质进行了系统地研究.通过主体相模拟与实验结果比较,验证了流体分子势能参数的合理性;通过改变狭缝壁面原子的能量参数,研究了受限环境对CO2-CH4体系汽液相平衡性质的影响.与主体相相比,在硬壁狭缝中,CO2-CH4体系的露点压力增加,泡点压力降低,压力-组成相图变窄,且体系更容易达到超临界状态;在吸引狭缝中,随壁面原子能量参数的增大,CO2-CH4体系的压力-组成相图上移,临界点处CH4的摩尔分数减小,相图变窄.在体系汽液相总组成相同情况下,硬壁狭缝内体系的汽液相密度均比主体相中小;随壁面原子能量参数增大,气相密度变大、液相密度在CH4的摩尔分数较小时变大而当CH4的摩尔分数达到一定值后反而减小.在体系汽液相总组成相同时,受限环境下的汽化热比主体相的汽化热小且随壁面吸引势的增强越来越小;在主体相和硬壁狭缝中体系的汽化热随CH4含量的增加单调减小,而当壁面势能参数较大时汽化热随CH4含量增加先增大后减小.  相似文献   

11.
The PT behavior of the carbon dioxide/normal alkane series exhibits a distinct transition in the CO2/nC13H28 system. This particular diagram is characterized by two liquid—liquid—vapor (l-l-g) loci, a lower liquid-upper liquid (l-l) critical branch extending from high pressures to the upper critical end point (UCEP) and two liquid—vapor (l-g) critical branches which cross near the lower critical end point (LCEP).An experimental PTx diagram in the vicinity of the CO2 critical point, LCEP and K point reveals the emergene at the LCEP of a l-l region which increases in size with temperture while the upper liquid—vapor (L2-g) region diminishes, eventually disappearing at the K point. The l-l-g surface illustrates the compositional changes of each phase with temperture.Detailed Px diagrams at three temperatures between the LCEP and K point are presented and each exhibits two critical points, a l-l-g locus and curves of constant phase volume ratio which show discrete changes in both value and slope at the l-l-g locus. Graphical and numerical methods of determining the phase densities and compositions from three phase volumetric behavior are presented.  相似文献   

12.
We present phase diagrams of a model bidisperse ferrocolloid consisting of a binary mixture of dipolar hard spheres (DHSs) under the influence of an external magnetic field. The dipole moments of the particles are chosen proportional to the particle volume to mimic real ferrocolloids, and we focus on dipole-dominated systems where isotropic attractive interactions are absent. Our results are based on density-functional theory in the modified mean-field (MMF) approximation. For one-component DHS fluids in external fields, and for corresponding mixtures dominated by one of the components, MMF theory predicts the tricritical point of the transition between an isotropic gas and a ferromagnetic liquid occurring at zero field to be changed into a critical point separating two magnetically ordered phases of different density. The corresponding critical temperature displays a nonmonotonic dependence on the field strength. Completely different behavior is found for the critical temperature related to the demixing phase transitions appearing in strongly asymmetric mixtures [G. M. Range and S. H. L. Klapp, Phys. Rev. E 70, 061407 (2004)]. For such systems, we find a monotonic decrease of the demixing critical temperature with increasing field. The field strength dependence of the critical temperature can therefore be tuned between nonmonotonic and monotonic behaviors just by changing the composition of the mixture--e.g., by adjusting the chemical potentials. This allows us to efficiently control the influence of external magnetic fields on the phase behavior over a large temperature interval.  相似文献   

13.
The effect of an external field (electric/magnetic) on the phase behavior of the binary mixture of very long thick and thin rodlike particles is studied. Both the thick and thin particles possess positive but different susceptibility anisotropics (Delta alpha). The difference in the extent of interaction between the external field and the two species is varied by means of a coupling parameter (l = Delta alpha(thick)/Delta alpha(thin)). Isotropic-nematic phase transition and demixing phase transitions taking place both in the isotropic and nematic phases are examined as a function of field strength on the level of the second virial theory of Onsager in the range of 0 < l <1. The approximate sixth order Legendre polynomial expansion method is used to represent the excluded volume interaction between the rodlike particles. It is found that the isotropic phase becomes weakly nematic (paranematic) in the presence of external field and the field orients both components in the direction of the field even if the field does not have direct interaction with the thick component (l = 0). Analytical expressions are derived for the external field induced order parameters and birefringence. The increasing field destabilizes both types of demixing transitions (isotropic-isotropic and nematic-nematic) and the paranematic-nematic phase transition. Moreover it induces closed loop immiscibility, and upper and lower critical points terminating the paranematic-nematic phase coexistence may occur for low values of the coupling parameter. It is interesting that while the phase boundaries of the paranematic-paranematic demixing and the paranematic-nematic transitions are very sensitive to the value of the coupling parameter at low pressures, the paranematic-nematic and nematic-nematic phase boundaries are practically independent of the coupling parameter at high pressures.  相似文献   

14.
We present a study of a water-in-oil microemulsion in which surfactant coated water nanodroplets are dispersed in the isotropic phase of the thermotropic liquid-crystal penthyl-cyanobiphenyl (5CB). As the temperature is lowered below the isotropic to nematic phase transition of pure 5CB, the system displays a demixing transition leading to a coexistence of a droplet-rich isotropic phase with a droplet-poor nematic. The transition is anticipated, in the high T side, by increasing pretransitional fluctuations in 5CB molecular orientation and in the nanodroplet concentration. The observed phase behavior supports the notion that the nanosized droplets, while large enough for their statistical behavior to be probed via light scattering, are also small enough to act as impurities, disturbing the local orientational ordering of the liquid crystal and thus experiencing pretransitional attractive interaction mediated by paranematic fluctuations. The pretransitional behavior, together with the topology of the phase diagram, can be understood on the basis of a diluted Lebwohl-Lasher model which describes the nanodroplets simply as holes in the liquid crystal.  相似文献   

15.
Reported in this work are phase equilibrium data at high pressures for the binary and ternary systems formed by {propane + N,N-dimethylformamide (DMF) + methanol}. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method for obtaining the experimental bubble and dew points transition data over the temperature range of (363 to 393) K, pressures up to 11.5 MPa and overall mole fraction of the lighter component varying from 0.1 to 0.995. For the systems investigated, vapour–liquid (VLE), liquid–liquid (LLE) and vapour–liquid–liquid (VLLE) phase transitions were visually recorded. Results show that the systems investigated present UCST (upper critical solution temperature) phase transition curves with an UCEP (upper critical end point) at a temperature higher than the propane critical temperature. The experimental data were modelled using the Peng–Robinson equation of state with the Wong–Sandler and the classical quadratic mixing rules, affording a satisfactory representation of the experimental data.  相似文献   

16.
The vapor-liquid coexistence curve of Morse fluid was calculated within the integral equations approach. The critical point coordinates were estimated. The parameters of Morse potential, fitted for elastic constants in solid phase, were used here to apply the results of present calculations to the determination of iron binodal. The properties of copper and sodium were considered in an analogous way. The calculations of pair correlation functions and isobars at liquid phase have shown that only for sodium these potential parameters allow one to obtain agreement with the measurements data. For iron another parameters are necessary to get this agreement in liquid phase. However, they give rise to very low critical temperature and pressure with respect to the estimates of other authors. Consequently, one can suppose that Morse potential is possibly inapplicable to the calculation of high temperature properties of non-alkali metals in disordered phases.  相似文献   

17.
18.
Phase equilibria of binary mixtures of liquid crystal and multiarm star acrylate derivatives have been established as a function of the number of acrylate arms by means of cloud point determination. Equilibrium phase diagrams of liquid crystal/multiarm acrylate derivatives have been calculated self-consistently in the framework of combined Flory-Huggins free energy of liquid-liquid demixing and Maier-Saupe free energy of nematic ordering. It was found experimentally that the phase diagram of the branched/star molecule/solvent shifts to elevated temperatures with an increasing number of acrylate arms. This movement of the coexistence line is attributed to the architectural effect contributing to the athermal entropic part of the chi interaction parameter. The present self-consistent solution has been tested satisfactorily with the observed phase diagrams of liquid crystal/acrylate systems.  相似文献   

19.
In this work we present a numerical study, based on molecular dynamics simulations, to estimate the freezing point of hard spheres and hypersphere systems in dimension D = 4, 5, 6, and 7. We have studied the changes of the radial distribution function (RDF) as a function of density in the coexistence region. We started our simulations from crystalline states with densities above the melting point, and moved down to densities in the liquid state below the freezing point. For all the examined dimensions (including D = 3), it was observed that the height of the first minimum of the RDF changes in an almost continuous way around the freezing density and resembles a second order phase transition. With these results we propose a numerical method to estimate the freezing point as a function of the dimension D using numerical fits and semiempirical approaches. We find that the estimated values of the freezing point are very close to the previously reported values from simulations and theoretical approaches up to D = 6, reinforcing the validity of the proposed method. This was also applied to numerical simulations for D = 7 giving new estimations of the freezing point for this dimensionality.  相似文献   

20.
《Chemical physics letters》1987,140(3):255-262
A symmetric tricritical point (TCP) is demonstrated for the nematic-smectic A transition by blending two nearly identical isomers and by showing that the difference in coexistence values of the nematic order parameter S goes to zero with TCP exponent β2 = 1 as TTCP is approached. A horizonta λ-line is associated with an observed universal behavior of S when a new scaling of T is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号