首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
朱利平 《高分子科学》2012,30(2):152-163
Inspired by the self-polymerization and strong adhesion characteristics of dopamine in aqueous conditions,a novel hydrophilic nanofiltration(NF) membrane was fabricated by simply dipping polysulfone(PSf) ultrafiltration(UF) substrate in dopamine solution.The changes in surface chemical composition and morphology of membranes were determined by Fourier transform infrared spectroscopy(FTIR-ATR),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM) and atomic force microscopy(AFM).The experimental results indicated that the self-polymerized dopamine formed an ultrathin and defect-free barrier layer on the PSf UF membrane.The surface hydrophilicity of membranes was evaluated through water contact angle measurements.It was found that membrane hydrophilicity was significantly improved after coating a polydopamine(pDA) layer,especially after double coating.The dyes filtration experiments showed that the double-coated membranes were able to reject completely the dyes of brilliant blue,congo red and methyl orange with a pure water flux of 83.7 L/(m2·h) under 0.6 MPa.The zeta potential determination revealed the positively-charged characteristics of PSf/pDA composite membrane in NF process.The salt rejection of the membranes was characterized by 0.01 mmol/L of salts filtration experiment.It was demonstrated that the salts rejections followed the sequence:NaCl2SO4422,and the rejection to CaCl2 reached 68.7%.Moreover,the composite NF membranes showed a good stability in water-phase filtration process.  相似文献   

2.
Mussel adhesive proteins including special functional groups, such as dopamine and 3,4-dihydroxy-l-phenylalanine (DOPA), exhibit strong adhesion and have thus been used in numerous applications. As a novel dye adsorbent for wastewater treatment, this study examineed poly(vinyl alcohol) (PVA) nanofibrous membranes (NFMs) fabricated via electrospinning and then coated with polydopamine (pDA) or polyDOPA through a simple dip coating process in dopamine or DOPA solution to examine. The surface morphology, chemical composition and hydrophilicty of PVA NFMs coated with pDA or polyDOPA were compared using scanning electron microscopy (SEM), UV photoelectron spectrometry (XPS) and contact angle analyzer, respectively. The thermal degradation temperatures of the PVA NFMs were increased significantly by about 100 °C due to the radical scavenging ability of pDA and pDOPA. Also, the differences in the adsorption performance toward a cationic dye, methylene blue (MB), for polydopamine- or polyDOPA-coated PVA NFMs were evaluated using a UV–Visible spectrophotometer. Finally, a recyclability test was conducted to confirm the applicability as a dye adsorbent.  相似文献   

3.
This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.  相似文献   

4.
基于多巴胺自聚合及肝素固定改善钛的血液相容性   总被引:1,自引:0,他引:1  
利用多巴胺自聚合及肝素固定的方法对纯钛进行表面修饰, 以改善其血液相容性. 采用水接触角测量、 X射线光电子能谱(XPS)和甲苯胺蓝法(TBO)等方法对所修饰的材料进行了表征. 采用溶血实验检测了材料的溶血性能, 并结合活化部分凝血活酶时间(APTT)测试和血小板黏附实验对所修饰材料的血液相容性进行了评价. 结果表明, 多巴胺能够在钛表面实现自聚合, 肝素可以共价接枝在聚多巴胺层上, 经肝素修饰后的材料的表面亲水性显著提高, 而且具有较低的溶血率, APTT时间显著延长, 血小板的黏附数量和被激活程度也显著降低. 因此, 纯钛经多巴胺自聚合以及肝素接枝修饰后的血液相容性得到了显著改善, 有望成为具有抗凝血功能的新型心血管植入材料.  相似文献   

5.
Capillary-channeled polymer (C-CP) fibers are demonstrated as a selective stationary phase for phosphopeptide analysis via LC–MS. Taking advantage of the oxidative self-polymerization of dopamine under alkaline conditions, a simple system involving a dilute aqueous solution of 0.2% w/v dopamine hydrochloride in 0.15% w/v TRIS buffer, pH 8.5 was utilized to coat polydopamine onto nylon 6 C-CP fibers. Confirmation of the polydopamine coating on the fibers (nylon-PDA) was made through attenuated total reflection-FTIR (ATR-FTIR) analysis. Imaging using SEM was also performed to examine the morphology and topography of the nylon-PDA. Subsequent loading of Fe3+ to the nylon-PDA matrix was confirmed by SEM/energy dispersive X-ray spectroscopy (SEM/EDX). The Fe3+-bound nylon-PDA fibers packed in a microbore column format were tested in the off-line preconcentration of phosphopeptides from a 1:100 mixture of β-casein/BSA digests for MALDI-TOF analysis. The packed column was also installed onto an HPLC system as a platform for the online sample clean-up and enrichment of phosphopeptides from a 1:1000 mixture of β-casein/BSA protein digests that were determined by subsequent ESI–MS analysis.  相似文献   

6.
In this work,we adopt a new tobramycin(TOB)-dopamine coating system to endow thin film composite membranes with excellent antifouling and antimicrobial properties.Combining the hydrophilic and antibiofouling properties of both TOB and polydopamine,the TOB-dopamine modified membrane exhibits improved antifouling and antimicrobial properties compared with the conventional dopamine modified and unmodified membranes.The TOB-dopamine system has two advantages over the conventional modification with dopamine and tris buffer solution.First,TOB-dopamine modification is more efficient than the conventional dopamine modification due to the accelerating effect of TOB on dopamine polymerization.Second,the TOB-dopamine modified membranes exhibit better hydrophilicity,and enhanced antifouling and antimicrobial properties than the conventional dopamine modified membrane.Beyond engineering membranes,the proposed TOB-dopamine system can also be extended for wider surface hydrophilic and antimicrobial modifications.  相似文献   

7.
在水溶液中将聚六亚甲基单胍盐酸盐(PHGH)共价接枝在经多巴胺自聚合改性的聚砜膜表面, 制备具有抗菌性能的纳滤膜. 采用全反射红外光谱(ATR-FTIR)、 扫描电子显微镜(SEM)和接触角测试考察膜表面的结构、 形貌和亲水性变化. 探讨PHGH含量对膜的接枝度及分离性能的影响, 并对膜的抗菌性能进行了评价. 结果表明, 经过多巴胺的自聚合和表面接枝PHGH后, 聚砜膜表面形成了具有纳滤分离性能的活性层, 并且膜表面亲水性得到改善. 随着PHGH含量的增大, 膜的纯水通量降低, 而对无机盐和染料的截留性能提高. 接枝后的复合膜具有较高的抗菌性能, 当PHGH含量为3%(质量分数)时, 抗菌率可达98.5%.  相似文献   

8.
9.
Coating a layer onto a support membrane can serve as a means of surface functionalization of membranes. Frequently, this procedure is a two-step process. In this paper, we describe a concept of membrane preparation in which a coating layer forms in situ onto a support membrane in one step by a co-extrusion process. Our aim is to apply a thin ion exchange layer (sulfonated polyethersulfone, SPES) onto a polysulfone support. The mechanical stability and adhesion of the ion-exchange material to the hydrophobic support membrane (polysulfone) has been studied by a systematic approach of initial proof-of-principle experiments, followed by single layer and double-layer flat sheet casting. Critical parameters quantified by the latter experiments are translated into the co-extrusion spinning process. The composite hollow fiber membrane has low flux as a supported liquid membrane for the copper removal due to the low ion exchange capacity of the SPES. The coating layer of the composite membrane is porous as indicated by gas pair selectivity close to unity. However, our new composite membrane has good nanofiltration properties: it passes mono and bivalent inorganic salts but rejects larger charged organic molecules. The experimental work demonstrates that co-extrusion can be a viable process to continuously prepare surface tailored hollow fiber membranes in a one-step process, even if the support and coating material differ significantly in hydrophilicity.  相似文献   

10.
A bioinspired adhesive material, polydopamine (pDA), was employed as an interfacial glue to stably immobilize human neural stem cells (hNSCs) on the external surface of biodegradable polycaprolactone (PCL) microspheres, thereby serving as versatile key systems that can be used for cell carriers. The pDA decoration on the PCL microspheres has been resulted in robust hNSC immobilization as well as proliferation on their curved surfaces. The pDA coating has transformed the hydrophobic PCL systems toward water‐friendly and sticky characteristics, thereby resulting in full dispersion in aqueous solution and stable adherence onto a wet biological surface. Adeno‐associated virus, a safe gene vector capable of effectively regulating cell behaviors, can be decorated on the PCL surfaces and delivered efficiently to hNSCs adhered to the microsphere exteriors. These distinctive multiple benefits of the sticky pDA microspheres can provide core technologies that can boost the therapeutic effects of cell therapy approaches.

  相似文献   


11.
DOPA在聚乙烯微孔膜上的自聚合及肝素固定化   总被引:3,自引:0,他引:3  
在溶液条件下,左旋3,4-二羟基苯丙氨酸(L-DOPA,或L-多巴)能在固体材料表面自发聚合,形成强力附着于材料表面的poly(DOPA)层.基于L-DOPA的这一特性,对聚乙烯(PE)微孔膜进行了表面改性,得到了PE/poly(DOPA)复合膜,并进一步通过poly(DOPA)层上的反应性基团将肝素共价固载在PE微孔膜上.X光电子能谱(XPS)分析结果证实了poly(DOPA)和肝素的固定,接触角测量数据表明膜的亲水性得到了显著提高.  相似文献   

12.
Surface properties of biomaterials, such as hydrophobic/hydrophilic balance, chemical group distribution, and topography play important roles in regulation of many cellular behaviors. In this study, we present a bio-inspired coating of synthetic biodegradable poly(L-lactide-co-?-caprolactone) (PLCL) films by using polydopamine for tunable cell behaviors such as adhesion and proliferation. Polydopamine coating decreased the water contact angles of the PLCL film from 75° to 40°, while the amount of coated polydopamine increased from 0.6 μg/cm(2) to 177.9 μg/cm(2). During the process, dopamine could be directly polymerized on the surface of the PLCL film to form a thin layer or nanosized particles of self-aggregates, which resulted in increase of overall roughness in a time-dependent manner. Characterization of surface atomic composition revealed an increase in signals from nitrogen and the C-N bond, both suggesting homogeneous polydopamine coating with prolonged coating time. The mechanical properties were similar following reaction with polydopamine for a time shorter than 30 min, while alterations in elongation and Young's modulus were observed when the coating time exceeded 240 min. Cell adhesion and proliferation on the polydopamine-coated films were significantly greater than those on the non-coated films. Interestingly, these cell behaviors were significantly improved even under the minimal coating time (5 min). In summary, the bio-inspired coating is of use to generate modular surface of biomaterial based on synthetic poly(α-hydroxy ester)s for tunable cell behaviors with optimization of coating time within the range in which their mechanical properties are not compromised.  相似文献   

13.
基于贻贝仿生化学的分离功能材料   总被引:1,自引:0,他引:1  
贻贝仿生的表面化学是近年来材料学、化学、生物医学等领域的交叉研究热点。多巴胺可以作为贻贝足丝蛋白(Mfp)超强黏附特性的模型分子,通过复杂的氧化-自聚和组装,形成多种功能的聚多巴胺(PDA)纳米涂层和纳米粒子,在分离膜、吸附材料、生物医用材料、生物黏结剂等领域有着广阔的应用前景。本研究小组近年来持续开展了基于贻贝仿生化学的分离功能材料制备与结构调控的研究工作,率先将多巴胺表面沉积方法应用于多孔分离膜表面的构建与功能化,提出了多巴胺的自聚-沉积过程模型,进而验证了PDA沉积层的纳滤分离特性,建立了一条简单方便的膜表面功能化与纳滤膜制备新途径。本文主要对基于贻贝仿生化学的分离功能材料,特别是分离膜的研究进展进行综述,并对将来的发展趋势进行展望。  相似文献   

14.
A photopolymerizationable mimic mussel protein structure monomer, dopamine methacrylamide (DMA), was synthesized. The photopolymerization of DMA was analysed by series real time near infrared spectroscopy (SRTIR). Dopamine methacrylamide/poly (ethylene oxide) (DMA/PEO) nanofibers were successfully prepared by electrospinning of aqueous DMA/PEO solution. Biocompatible nanofibrous membrane with good adhesion was produced by photocuring from the DMA/PEO nanofibers. The surface characterization and structure of the composite nanofibrous membrane were characterized by a scanning electron microscopy (SEM) and contact angle measurements. For identifying the potential crystalline of curing, a XRD method was used through comparing diffraction data. In the cell adhesion test we utilized the mouse fibroblast (L929) to exam the various use of the nanofibrous membrane as scaffolding materials for skin regeneration.  相似文献   

15.
Phospholipid polymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)], was grafted with polyethylene (PE) membrane using photoinduced polymerization technique to make the membrane resistant to cell adhesion. The water contact angle on the PE membrane grafted with poly(MPC) decreased with an increase in the photopolymerization time. This decrease corresponded to the increase in the amount of poly(MPC) grafted on the PE surface. The same graft polymerization procedure was applied using other hydrophilic monomers, such as acrylamide (AAm), N-vinylpyrrolidone (VPy) and methacryloyl poly(ethylene glycol) (MPEG). These monomers were also polymerized to form grafted chains on the PE membrane, and the grafting was confirmed with X-ray photoelectron spectroscopy. Analysis of amount and distribution of plasma proteins at the plasma-contacting surface of the original and the modified PE membranes were analyzed using immunogold assay. The grafting of poly(MPC) and poly(VPy) on PE membrane reduced the plasma protein adsorption significantly compared with that on the original PE membrane. However, the PE membranes grafted with poly(AAm) or poly(MPEG) did not show any effects on protein adsorption. Platelet adhesion on the original and modified PE membranes from platelet-rich plasma was also examined. A large number of platelets adhered and activated on the original PE membrane. Grafting with poly(AAm) did not suppress platelet adhesion, but grafting with poly(MPC) or poly(VPy) on the PE membrane was effective in preventing platelet adhesion. It is concluded that the introduction of the phosphorylcholine group on the surface could decrease the cell adhesion to substrate polymer.  相似文献   

16.
Microbial colonization of indwelling devices remains a major concern in modern healthcare. Developing approaches to prevent biomaterial‐associated infections (BAI) is, therefore, in great demand. This study aimed to immobilize two antimicrobial peptides (polymyxins B and E) onto polydimethylsiloxane (PDMS) using two polydopamine (pDA)‐based approaches: the conventional two‐step method involving the deposition of a pDA layer to which biomolecules are immobilized, and a one‐step method where peptides are dissolved together with dopamine before its polymerization. Surface characterization confirms the immobilization of polymyxins onto PDMS at a non‐toxic concentration. Immobilization of polymyxins using a one‐step pDA‐based approach is able to prevent Pseudomonas aeruginosa adhesion and kill a significant fraction of the adherent ones. Living cells adhered to these modified surfaces exhibit the same susceptibility pattern as cells adhered to unmodified surfaces, highlighting no resistance development. Results suggest that polymyxins immobilization holds a great potential as an additional antimicrobial functionality in the design of biomaterials.

  相似文献   


17.
Chitosan/PTFE composite membranes were prepared from casting a γ-(glycidyloxypropyl)trimethoxysilane (GPTMS)-containing chitosan solution on poly(styrene sulfuric acid) grafted expended poly(tetrafluoroethylene) film surface. The adhesion between the chitosan skin layer and the PTFE substrate was pretty good to warrant the high performance of chitosan/PTFE composite membranes using in pervaporation dehydration processes on isopropanol. The chitosan/PTFE membrane exhibited a permeation flux of 1730 g/m2 h and a separation factor of 775 at 70 °C on pervaporation dehydration of a 70 wt% isopropanol aqueous solution. The membrane also survived after a long-term operation test in 45 days.  相似文献   

18.
In this work, we developed a capillary column modified with zeolitic imidazolate framework‐8 as a novel stationary phase for open‐tubular capillary electrochromatography. To immobilize zeolitic imidazolate framework‐8 onto the inner surface of silica capillary, a bio‐inspired polydopamine functionalization was used to functionalize the capillary surface with polydopamine. First, a polydopamine layer was assembled inside the capillary. Second, due to noncovalent adsorption and covalent reaction ability, polydopamine could attract and anchor zeolitic imidazolate framework‐8 onto the inner surface of capillary. It has been demonstrated that zeolitic imidazolate framework‐8 was successfully grafted on the inner wall of the capillary by scanning electron microscopy, and Fourier transform infrared spectroscopy. The electro‐osmotic flow characteristics of capillaries were also investigated by varying the pH value and acetonitrile content of mobile phase. The zeolitic imidazolate framework‐8 coating not only increased the phase ratio of open‐tubular column, but also improved the interactions between tested analytes and the stationary phase. Three groups of isomers including acidic, basic, and neutral compounds were well separated on the zeolitic imidazolate framework‐8 bonded column, with theoretic plate numbers up to 1.9 × 105 N for catechol. The repeatability of the prepared columns was also studied, and the relative standard deviations for intra‐ and interday runs were less than 5%.  相似文献   

19.
N,O-carboxymethyl chitosan (NOCC) composite nanofiltration membranes having a polysulfone (PS) UF membrane as the substrate were prepared using a method of coating and cross-linking, in which a glutaraldehyde (GA) aqueous solution was used as the cross-linking agent. Attenuated total reflection infrared spectroscopy (ATR-IR) was employed to characterize the resulting membrane. The effects of the composition of the casting solution of the active layer, the concentration of the cross-linking agent, and the membrane preparation techniques on the performance of the composite membrane were investigated. At 13–15 °C and 0.40 MPa the rejections of the resulting membrane to Na2SO4 and NaCl solutions (1000 mg L−1) were 92.7 and 30.2%, respectively, and the permeate fluxes were 3.0 and 5.1 kg m−2 h−1, respectively. The rejection of this kind of membrane to the electrolyte solutions decreased in the order of Na2SO4, NaCl, MgSO4, and MgCl2. This suggests that the membrane active layer acquires a negative surface charge distribution by the adsorption of anions from the electrolyte solution and this charge distribution mainly determines the membrane performance.  相似文献   

20.
A novel approach towards thin-layer molecularly imprinted polymer (MIP) composite membranes was developed based on using benzoin ethyl ether (BEE), a very efficient alpha-scission photoinitiator. The triazine herbicide desmetryn was used as the template, and a mixture of the functional monomer 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and the cross-linker N,N'-methylene-bis-acrylamide (MBAA) in methanol was copolymerised via photoinitiation followed by deposition on the surface of either hydrophobic or hydrophilically precoated polyvinylidene fluoride (PVDF) microfiltration membranes. Blanks were prepared under identical conditions, but without the template. Especially, the degree of functionalization (DF) of the PVDF membranes with poly(AMPS-co-MBAA), the membrane permeabilities and non-specific vs. MIP-specific template binding from aqueous solutions during fast filtration were studied in detail to evaluate the effects of the preparation conditions, in particular the coating of the membrane surface with the photoinitiator prior to UV irradiation and the influence of the precoated hydrophilic layer on PVDF. Significant template specificities of the MIP membranes compared with the blanks were only achieved for the preparations including coating the two types of PVDF membranes with BEE. In contrast, a homogeneous photoinitiation of the copolymerisation in the membrane pore volume yielded functional layers with similar DF but with only non-specific desmetryn binding. All data clearly indicate the significant contribution of MIP stabilization by the support material in layers of optimum thickness to the MIP specificity. Main advantages of the novel approach are the potential to synthesize MIP composite membranes by controlled deposition onto any kind of polymer support, and the very fast MIP preparations due to a very efficient photoinitiator and small MIP layer thickness. Due to the mechanical and chemical stability in combination with high permeabilities, thin-layer MIP composite membranes have a large application potential, e.g., in solid phase extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号