首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multi-ionization equation-of-motion coupled-cluster (CC) method is developed for multireference (MR) problems. It is operationally single reference, depending upon a formal matrix diagonalization step to define the coefficients in the wavefunction in an unbiased way that allows for important MR character. The method is illustrated for the autoisomerization of cyclobutadiene, which has a very large multireference effect and compared to other MR-CC results. The newly implemented methods are also used to obtain the vertical double ionization (DI) potentials of several small molecules (H(2)O, CO, C(2)H(2), C(2)H(4)). Also, the performance of the new methods is analyzed by plotting the potential energy curve for twisted ethylene as a function of a dihedral angle between two methylenes. Evaluation of the total molecular energy via MR-DI-CC calculations makes it possible to avoid an unphysical cusp.  相似文献   

2.
In this paper, we present a formulation based on constrained variational approach to enable efficient computation of energy derivatives using Fock-space multireference coupled-cluster theory. Adopting conventional normal ordered exponential with Bloch projection approach, we present a method of deriving equations when general incomplete model spaces are used. Essential simplifications arise when effective Hamiltonian definition becomes explicit as in the case of complete model spaces or some special quasicomplete model spaces. We apply the method to derive explicit generic expressions upto third-order energy derivatives for [0,1], [1,0], and [1,1] Fock-space sectors. Specific diagrammatic expressions for zeroth-order Lagrange multiplier equations for [0,1], [1,0], and [1,1] sectors are presented.  相似文献   

3.
《Chemical physics》2005,315(3):240-250
A thorough formulation of Fock Space Brillouin–Wigner Coupled Cluster method is presented following previous developments [N.D.K. Petraco, Ľ. Horný, H.F. Schaefer, I. Hubač, J. Chem. Phys. 117 (2002) 9580]. The new method is designed to avoid the intruder states problem, and introduces the single-root solution feature which has not been considered yet within valence-universal methods. The explicit equations for the (0,1) sector of the Fock space are introduced.  相似文献   

4.
The intermediate Hamiltonian (IH) coupled-cluster method makes possible the use of very large model spaces in coupled-cluster calculations without running into intruder states. This is achieved at the cost of approximating some of the IH matrix elements, which are not taken at their rigorous effective Hamiltonian (EH) value. The extrapolated intermediate Hamiltonian (XIH) approach proposed here uses a parametrized IH and extrapolates it to the full EH, with model spaces larger by several orders of magnitude than those possible in EH coupled-cluster methods. The flexibility and resistance to intruders of the IH approach are thus combined with the accuracy of full EH. Various extrapolation schemes are described. A pilot application to the electron affinities (EAs) of alkali atoms is presented, where converged EH results are obtained by XIH for model spaces of approximately 20,000 determinants; direct EH calculations converge only for a one-dimensional model space. Including quantum electrodynamic effects, the average XIH error for the EAs is 0.6 meV and the largest error is 1.6 meV. A new reference estimate for the EA of Fr is proposed at 486+/-2 meV.  相似文献   

5.
《Chemical physics letters》1985,117(5):433-436
First derivatives of the coupled-cluster doubles (CCD) energy have been implemented for the first time. Formulae are presented for the Hartree-Fock reference case. These equations are illustrated by applying CCD gradients to the geometry optimization and harmonic vibrational frequency determination of H2O and the 1A1 and the 1A1 state of CH2.  相似文献   

6.
《Chemical physics letters》1985,120(3):261-265
The three-electron excitation operator T3 is included approximately in the coupled-cluster method with single and double excitations for open shells (CCSD). The resulting CCSD + T scheme incorporates all energy diagrams up to and including third order in the perturbation. All ten valence-shell energy differences of O and its ions were calculated. They show significant effects of T3 and are within 0.1 eV of the basis set limit.  相似文献   

7.
A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N(7) steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelativistic counterpart, which needs to be compared to the by a factor of 32 higher cost for fully relativistic schemes and schemes with spin-orbit coupling included already at the Hartree-Fock self-consistent field (HF-SCF) level. This substantial computational saving is due to the use of real molecular orbitals and real two-electron integrals. Results on 5p-, 6p-, and 7p-block element compounds show that the bond lengths and harmonic frequencies obtained with the present two-component CCSD method agree well with those computed with the CCSD approach including spin-orbit coupling at the HF-SCF level even for the 7p-block element compounds. As for the CCSD(T) approach, high accuracy for 5p- and 6p-block element compounds is retained. However, the difference in bond lengths and harmonic frequencies becomes somewhat more pronounced for the 7p-block element compounds.  相似文献   

8.
Summary The error in the energy of the traditional coupled-cluster (TCC) approach and of several variants is analyzed in terms of the error of the cluster operatorS. A key feature of this analysis is that TCC can be based on an energy functional (asymmetric inS andS ) that is made stationary with respect to variation ofS . The error of TCC scales with the particle numbern, but it is not quadratic in . An improved coupled-cluster method (ICC) is presented that is the next step in a hierarchy from TCC to an exact variational theory. An alternative hierarchy is possible that leads to the extended coupled-cluster (ECC) method of Arponen. Variational (VCC) and unitary (UCC) coupled cluster theories and their stationary conditions and errors are analyzed along similar lines and practicable VCC or UCC approaches are presented. An infinite summation of certain terms in the VCC expectation value is shown to lead to a coupled-pair functional of the type proposed by Ahlrichs. The various CC schemes discussed here are compared on the CC-D, CC-SD and CC-SDT levels and beyond this. Special aspects referring to properties are also discussed.  相似文献   

9.
Local correlation potentials have been obtained from the nonlocal Brueckner coupled-cluster correlation potentials for the rare-gas atoms He, Ne, and Ar and the CO molecule. It is shown that the local correlation potential can mainly be expressed as a sum of two components: a "pure" correlation part and a relaxation contribution. While the total correlation potentials show an oscillating behavior near the nuclei, indicating the atomic shell structure, their components decrease rather monotonously, with a step structure in case of Ne and Ar. By looking at the determinantal overlap and one-electron properties it has been found that the orbitals obtained from these local potentials form a determinant which very well corresponds with the Brueckner determinant. Thus the previously found closeness between the Hartree-Fock determinant and the exchange-only Kohn-Sham determinant [Della Sala and Gorling, J. Chem. Phys. 115, 5718 (2001)] is confirmed also for the correlated case.  相似文献   

10.
The recently presented linear-response function for Mukherjee's multireference coupled-cluster method (Mk-MRCC) [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044115 (2012)] is employed to determine vertical excitation energies within the singles and doubles approximation (Mk-MRCCSD-LR) for ozone as well as for o-benzyne, m-benzyne, and p-benzyne, which display increasing multireference character in their ground states. In order to assess the impact of a multireference ground-state wavefunction on excitation energies, we compare all our results to those obtained at the single-reference coupled-cluster level of theory within the singles and doubles as well as within the singles, doubles, and triples approximation. Special attention is paid to the artificial splitting of certain excited states which arises from the redundancy intrinsic to Mk-MRCC theory and hinders the straightforward application of the Mk-MRCC-LR method.  相似文献   

11.
The primary characteristics of single reference coupled-cluster (CC) theory are size-extensivity and size-consistency, invariance under orbital rotations of the occupied or virtual space, the exactness of CC theory for N electron systems when the cluster operator is truncated to N-tuple excitations, and the relative insensitivity of CC theory to the choice of the reference determinant. In this work, we propose a continuous class of methods which display the desirable features of the coupled-cluster approach with single and double excitations (CCSD). These methods are closely related to the CCSD method itself and are inspired by the coupled electron pair approximation (CEPA). It is demonstrated that one can systematically improve upon CCSD and obtain geometries, harmonic vibrational frequencies, and total energies from a parameterized version of CCSD or pCCSD(α,β) by selecting a specific member from this continuous family of approaches. In particular, one finds that one such approach, the pCCSD(-1,1) method, is a significant improvement over CCSD for the calculation of equilibrium structures and harmonic frequencies. Moreover, this method behaves surprisingly well in the calculation of potential energy surfaces for single bond dissociation. It appears that this methodology has significant promise for chemical applications and may be particularly useful in applications to larger molecules within the framework of a high accuracy local correlation approach.  相似文献   

12.
The quasidegenerate coupled-cluster approach with a hermitian model Hamiltonian is constructed. This theory provides an efficient method for simultaneous construction and evaluation of the hermitian diagrammatic model Hamiltonian up to an arbitrary high order of perturbation theory and prescribed form of topology.  相似文献   

13.
An algorithm for generation of the spin-orbital diagrammatic representation, the corresponding algebraical formulas, and the computer code of the coupled-cluster (CC) method with an arbitrary level of the electronic excitations has been developed. The method was implemented in the general case as well as for specific application in the state-specific multireference coupled-cluster theory (SSMRCC) based on the concept of a "formal reference state." The algorithm was tested in SSMRCC calculations describing dissociation of a single bond and in calculations describing simultaneous dissociation of two single bonds--the problem requiring up to six-particle excitations in the CC operator.  相似文献   

14.
The possibilities for the approximate treatment of higher excitations in coupled-cluster (CC) theory are discussed. Potential routes for the generalization of corresponding approximations to lower-level CC methods are analyzed for higher excitations. A general string-based algorithm is presented for the evaluation of the special contractions appearing in the equations specific to those approximate CC models. It is demonstrated that several iterative and noniterative approximations to higher excitations can be efficiently implemented with the aid of our algorithm and that the coding effort is mostly reduced to the generation of the corresponding formulas. The performance of the proposed and implemented methods for total energies is assessed with special regard to quadruple and pentuple excitations. The applicability of our approach is illustrated by benchmark calculations for the butadiene molecule. Our results demonstrate that the proposed algorithm enables us to consider the effect of quadruple excitations for molecular systems consisting of up to 10-12 atoms.  相似文献   

15.
Coupled-cluster (CC) theory including single (S) and double (D) excitations and carried out with a spin-unrestricted Hartree–Fock (UHF) reference wave function is free from S + 1 spin contamination as can be confirmed by an analysis of the expectation value of the spin operator, Ŝ 2. Contamination by the S + 2 contaminant can be projected out by an approximate procedure (APCCSD) with a projection operator, P^, represented by the product of the spin annihilation operators ? s+ 1 and ?s+2. The computational cost of such a projection scales with O(M 6) (M is the number of basis functions). The APCCSD energy obtained after annihilation of the S + 2 contaminant can be improved by adding triple (T) excitations in a perturbative way, thus leading to APCCSD(T) energies. For the 17 examples studied, the deviation of the UHF-CCSD(T) energies from the corresponding full configuaration interaction values is reduced from 4.0 to 2.3 mhartree on the average as a result of annihilating the S + 2 contaminant in an approximate way. In the case of single-bond cleavage, APCSSD leads to a significant improvement of the energy in the region where the bonding electrons recouple from a closed shell to an open shell singlet electron pair. Received: 13 April 2000 / Accepted: 12 July 2000 / Published online: 24 October 2000  相似文献   

16.
Explicitly correlated coupled-cluster theory has developed into a valuable computational tool for the calculation of electronic energies close to the limit of a complete basis set of atomic orbitals. In particular at the level of coupled-cluster theory with single and double excitations (CCSD), the space of double excitations is quickly extended towards a complete basis when Slater-type geminals are added to the wave function expansion. The purpose of the present article is to demonstrate the accuracy and efficiency that can be obtained in computational thermochemistry by a CCSD model that uses such Slater-type geminals. This model is denoted as CCSD(F12), where the acronym F12 highlights the fact that the Slater-type geminals are functions f(r 12) of the interelectronic distances r 12 in the system. The performance of explicitly correlated CCSD(F12) coupled-cluster theory is demonstrated by computing the atomization energies of 73 molecules (containing H, C, N, O, and F) with an estimated root-mean-square deviation from the values compiled in the Active Thermochemical Tables of σ = 0.10 kJ/mol per valence electron. To reach this accuracy, not only the frozen-core CCSD basis-set limit but also high-order excitations (connected triple and quadruple excitations), core–valence correlation effects, anharmonic vibrational zero-point energies, and scalar and spin–orbit relativistic effects must be taken into account.  相似文献   

17.
《Chemical physics letters》1987,142(6):451-454
Our recently developed and tested unitary multiconfigurational coupled-cluster electronic wavefunction method is extended to permit, for the first time, the analytical evaluation of energy derivatives. The unitary nature of this method admits a variational energy functional whose stationary nature plays a key role in simplifying our derivation. Explicit expressions are given for the gradient (first energy derivative) for both the full unitary coupled cluster and its coupled electron pair approximation (CEPA).  相似文献   

18.
Employing separate cluster ansatz in time-independent and time-dependent wave-operators, coupled-cluster (CC) response theory is generalized to multireference (MR) expansion spaces. For state energies, this corresponds to the MR secular problem with an arbitrary similarity-transformed effective Hamiltonian, H˜=Ω−1 HΩ. The effective Hamiltonian can be generated via size-extensive CC methods. Thus the states in MR linear response theory (MRLRT) maintain the usual CC core-extensive properties. We have used the Gelfand unitary group basis of the spin-adapted configurations to construct the matrix of H˜ in the MR excitation space. As a preliminary application, the CC singles and doubles effective Hamiltonian is applied to excitation and photoionization energies of the CH+ and N2 molecules, and is compared with experimental results and results from other numerical procedures including conventional CC linear response theory (CC-LRT), MR and full configuration interaction (MRCI and FCI) methods. The numerical results indicate that MRLRT reproduces valence and external excited states quantitatively, combining the best features of CC-LRT and MRCI. Received: 2 July 1998 / Accepted: 28 August 1998 / Published online: 11 November 1998  相似文献   

19.
Summary A time-dependent coupled-cluster approach may be employed to describe dynamic processes of many-electron systems. Atomic properties, such as the frequency-dependent polarizability, can be treated as a response of the system described by the coupled-cluster expansion to an external radiation field. The major difficulty in the realization of such a formalism is to deal with dynamic pair functions. The procedure reported here is to simplify the full set of single- and pair-excitation expansion equations to a subset of equations which includes polarization and relaxation effects to all orders and is solved by using a complete set of discrete basis functions. Calculations of excitation energies and frequency-dependent electric dipole polarizabilities for helium are presented. Application of the procedure to calculate photoionization cross sections is discussed.  相似文献   

20.
The formalism of response theory is applied to derive expressions for static and dynamic polarizabilities within the state-specific multireference coupled-cluster theory suggested by Mukherjee and co-workers (Mk-MRCC) [J. Chem. Phys. 110, 6171 (1998)]. We show that the redundancy problem inherent to Mk-MRCC theory gives rise to spurious poles in the Mk-MRCC response functions, which hampers the reliable calculation of dynamic polarizabilities. Furthermore, we demonstrate that in the case of a symmetry-breaking perturbation a working response theory is obtained only if certain internal excitations are included in the responses of the cluster amplitudes. Exemplary calculations within the singles and doubles approximation (Mk-MRCCSD) are carried out on aryne compounds to illustrate the impact of a multireference ansatz on the polarizability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号