首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Hasan  S C Arora  D Hans  M S Swami 《Pramana》1982,19(2):133-140
The integral energy spectrum of primary cosmic rays has been obtained. In the energy range (2.4×103−1.1×105 GeV), the spectrum of all nuclei is consistent with a power law of indexγ=1.55±0.06 and the flux of all nuclei is:N(⩾E 0)⋍(5.1±1.8)×10−1×E 0 −1.55 particles/cm2 sterad. sec., whereE 0 is in GeV. The spectrum of primaryα-particles in the energy range (4.4×103−4.8×104) GeV is also consistent with a power law of indexγ=1.71±0.12 and the flux is:N(⩾E 0)=(4.2±1.4)×10−1×E 0 −1.71 , particles per cm2 sterad. sec, whereE 0 is in GeV.  相似文献   

2.
In this paper we reported a metal complex 1-Zn (2,5-di-[2-(3,5-bis(2-pyridylmethyl)amine-4-hydroxy-phenyl)-ethylene]-pyrazine-Zn) as a fluorescent probe sensing DNA. The result of the competitive experiment of the probe with ethidium bromide (EB) to bind DNA, absorption spectral change and polarization change in the presence and absence of DNA revealed that interaction between the probe and DNA was via intercalation. Ionic strength experiment showed the existence of electrostatic interaction as well. Scatchard plots also confirmed the combined binding modes. The fluorescence enhancement of the probe was ascribed to highly hydrophobic environment when it bound the macromolecules such as DNA, RNA or denatured DNA. The binding constant between the probe and DNA was estimated as 3.13 × 107 mol−1 L. The emission intensity increase was proportional to the concentration of DNA. Based on this, the probe was used to determine the concentration of calf thymus DNA (ct-DNA). The corresponding linear response ranged from 2.50 × 10−7 to 4.75 × 10−6 mol L−1, and detection limit was 1.93 × 10−8 mol L−1 for ct-DNA.  相似文献   

3.
In this paper, we reported the syntheses and investigation of the modes of binding to DNA of the two new ethidium derivatives containing benzoyl and phenylacetyl groups of both amines at 3-and 8- positions. The interactions between calf thymus DNA (ct-DNA) and the two derivatives, 3,8-dibenzoylamino-5-ethyl-6-phenylphenantridinium cloride (E2) and 3,8-diphenylacetylamino-5-ethyl-6-phenylphenantridinium chloride (E3), were investigated by fluorescence quenching spectra and UV-vis absorption spectra. The Stern-Volmer quenching constants, binding constants, binding sites and the corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The results indicated the formation of E2 and E3-DNA complexes and van der Waals interactions as the predominant intermolecular forces in stabilizing for each complex. In addition, increasing nucleophilicity of the functional groups at 3- and 8- positions exhibited the respectable increment the DNA binding affinities of derivatives. The results of absorption, ionic strength and iodide ion quenching suggested that the interaction mode of E2 and E3 with ct-DNA was intercalative binding. The limit of detection (LOD) of ct-DNA were 7.49 × 10−8 (n = 4) and 4.18 × 10−8 mol/l (n = 7) in presence of E2 and E3, respectively.  相似文献   

4.
A complex Fe(phen)2·PHPIP·3ClO4·2H2O, where phen = 1,10-phenanthroline and PHPIP = p-hydroxyphenylimidazo[f]1,10-phenanthroline, was synthesized and acted as a good fluorescence indicator based on its interaction with double-duplex DNA. Then a fiber-optic DNA biosensor of fluorimetric detection was developed based on the recognition of target DNA in DNA hybridization assays. A probe ssDNA was covalently immobilized onto the surface of quartz optical fibers and then the probe ssDNA hybridized with complementary ssDNA introduced into the local environment of the sensor. The hybridization with complementary strands was monitored in real time by fluorimetric detection. Several factors affecting the probe immobilization, target DNA hybridization, and indicator binding reactions were optimized to maximize the sensitivity and shorten the assay time. Using this method, a sequence of the 16-mer oligonucleotides could be quantified over the range from 4.98 × 10−7 to 4.88 × 10−6 M and a detection limit of 1.08 × 10−7 M. And the designed optic-fiber biosensor could be conveniently regenerated by thermal denature. The utility of the novel hybridization indicator could provide a simple, rapid, low toxicity and reusable detection.  相似文献   

5.
Four novel copper(II) complexes of the composition [CuLX] where L = 2,6-bis(benzimidazole-2yl)pyridine, X = dipyridophenazine (L1), 1,10-phenanthroline (L2), hydroxyproline (L3) and 2,6-pyridine dicarboxylic acid (L4) were synthesized and characterized by using elemental analysis, FT-IR, UV–vis, ESI-MS, molar conductance and magnetic susceptibility measurements. The complexes [CuLL1](NO3)2 [1], [CuLL2](NO3)2 [2], [CuLL3](NO3) [3] and [CuLL4] (NO3) [4] are stable at room temperature. In DMSO the complexes [1] and [2] are 1:2 electrolytes, [3] and [4] are 1:1 electrolytes. Based on elemental and spectral studies five coordinated geometry is assigned to all the four complexes. The interaction of four copper ion complexes with calf thymus DNA were carried out by UV–vis titrations, fluorescence spectroscopy, thermal melting and viscosity measurements .The binding constant (Kb) of the above four metal complexes were determined as 5.43 × 104 M,−1 2.56 × 104 M−1, 1.21 × 104 M−1 and 1.57 × 104 M−1 respectively. Quenching studies of the four complexes indicates that these complexes strongly bind to DNA, out of all complex 1 is binding more strongly. Viscosity measurements indicate the binding mode of complexes with CT DNA by intercalation through groove. Thermal melting studies also support intercalative binding. The nuclease activity of the above metal complexes shows that 1, 2 and 3 complexes cleave DNA through redox chemistry.  相似文献   

6.
The interaction between thyroxine hormone and 7 hydroxycoumarin (7HC) was investigated using fluorescence quenching method. The experimental results showed that thyroxine could quench the fluorescence of 7HC by forming the 7HC–thyroxine complex with static quenching. The apparent binding constants (K) between 7HC and thyroxine were determined to be 1.51 × 104 (297 K) and 9.06 × 103 (310 K). The binding sites (n) 0.98 ± 0.1. The thermodynamic parameters showed that the interaction between 7HC and thyroxine was driven mainly by hydrogen bonding interactions and van der Waals force. Calibration for thyroxine, based on quenching titration data, was linear in the concentration range 2.0 × 10−8 to 3.0 × 10−7 mol/l. The relative standard deviation was 2.58% for 2.0 × 10−7 mol/l thyroxine (n = 4) and the 3σ limit of detection was 3.42 × 10−8 mol/l in cationic surfactant CTAB medium.  相似文献   

7.
Variable chain length di-urethane cross-linked poly(oxyethylene) (POE)/siloxane hybrid networks were prepared by application of a sol-gel strategy. These materials, designated as di-urethanesils (represented as d-Ut(Y′), where Y′ indicates the average molecular weight of the polymer segment), were doped with lithium triflate (LiCF3SO3). The two host hybrid matrices used, d-Ut(300) and d-Ut(600), incorporate POE chains with approximately 6 and 13 (OCH2CH2) repeat units, respectively. All the samples studied, with compositions ∞ > n ≥ 1 (where n is the molar ratio of (OCH2CH2) repeat units per Li+), are entirely amorphous. The di-urethanesils are thermally stable up to at least 200 °C. At room temperature the conductivity maxima of the d-Ut(300)- and d-Ut(600)-based di-urethanesil families are located at n = 1 (approximately 2.0 × 10−6 and 7.4 × 10−5 Scm−1, respectively). At about 100 °C, both these samples also exhibit the highest conductivity of the two electrolyte systems (approximately 1.6 × 10−4 and 1.0 × 10−3 Scm−1, respectively). The d-Ut(600)-based xerogel with n = 1 displays excellent redox stability.  相似文献   

8.
ESR investigations on exchange coupled pairs of Cu ions in single crystals of Cu(dtc)2, isomorphously diluted with the corresponding diamagnetic zinc salt, are reported. The spin Hamiltonian parameters for the coupled species (S=1) are:g =2.1025,g +=2.031,A=75.1×10−4 cm−1,B=14.8×10−4,D=276.0×10−4 cm−1 andE=46.7×10−4 cm−1. While theg andA tensors show tetragonal symmetry, the zeor-field splitting tensor is rhombic and has principal axes different from those of theg andA tensors. Intensity measurements made down to 4.2 K indicate that the exchange is ferromagnetic with |FFF| ∼ 10 cm−1. Direct dipole-dipole interaction appears to be the major contribution to the zero-field splitting. A calculation on the distributed point dipole model shows that dipolar interaction is considerably modified by the high covalency of the Cu-S bond and accounts for the rhombic nature of the tensor. The possible exchange mechanisms in Cu(dtc)2—direct exchange and superexchange through the bridging sulphurs—are discussed.  相似文献   

9.
Two component (ethidium bromide–caffeine, ethidium bromide–DNA) and three component (ethidium bromide–caffeine–DNA) systems in aqueous saline (0.01 M NaCl) phosphate buffer solutions (pH 6.86, T = 298 K) are studied spectrophotometrically. The equilibrium constants for dimerization of caffeine, K D  = 1.22 ± 2 M−1, and for heteroassociation of ethidium bromide with caffeine, K = 71 ± 8 M−1, in ethidium bromide–caffeine systems are determined. When the concentration of caffeine is increased, the dynamic equilibrium of the solution shifts toward formation of heterocomplexes which are, presumably, stabilized by dispersive and hydrophobic interactions of chromophores. The equilibrium parameters for ethidium bromide complex formation with DNA are calculated: the coupling constant for the dye with the biopolymer, K 1 = (232 ± 16)⋅103 M−1, and the number of base pairs of the biopolymer participating in bonding with the ligand, n 1 = 3.6 ± 0.2, are calculated. Given these values, it is suggested that under these experimental conditions there are two types of bonding between ethidium bromide and the nucleic acid — intercalation and “external” bonds. A McGhee–von Hippel model for a three component system and the numerical values of the parameters for molecular complex formation in two component systems are used to calculate the bonding constant for caffeine with DNA, K 2 = 127 ± 30 M−1, and the number of base pairs of DNA which bond with caffeine, n 2 = 1.7 ± 0.2. The concentrations of ethidium bromide and caffeine in the composition of two and three component complexes are calculated as functions of the nucleic acid content in the solution. An analysis of the concentration dependences shows that heteroassociation of ligands has a significant effect on the reduction in the concentration of ethidium bromide–DNA complexes in a three component system for low DNA concentrations, while at high DNA concentrations the bonding of caffeine with the biopolymer has this effect. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 143–151, January–February 2009.  相似文献   

10.
A new anthracene-based fluorescent PET sensor 1 with a tridentate ionophore of amide/β-amino alcohol displays very good selectivity and sensitivity for Fe3+ (K a = 1.6 × 103 M−1) and Hg2+ (K a = 2.1 × 103 M−1) in CH3CN–H2O (3:7, v/v) with detection limit of 1 μM. More fluorescence enhancement was observed when 1 selectively detected Fe3+ or Hg2+ in CH3CN and its detection limit was up to 0.03 μM.  相似文献   

11.
It is found that silver nanoparticles (AgNPs) can further enhance the fluorescence intensity of curcumin (CU) - cetyltrimethylammonium bromide (CTAB) – nucleic acids and improve its anti-photobleaching activity. Under optimum conditions, the enhanced fluorescence intensity is proportion to the concentration of nucleic acids in the range of 2.0 × 10−8–1.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 2.0 × 10−8–1.0 × 10−6 g mL−1 for calf thymus DNA (ctDNA), 1.0 × 10−8–1.0 × 10−6 g mL−1 for yeast RNA (yRNA), and their detection limits (S/N = 3) are 8.0 ng mL−1, 10.5 ng mL−1 and 5.8 ng mL−1, respectively. This method is used for determining the concentration of DNA in actual sample with satisfactory results. The interaction mechanism is also studied.  相似文献   

12.
A new, simple, sensitive and selective spectrofluorimetric method for the determination of Hydrochlorothiazide was developed in acetonitrile at pH 6.2. The Hydrochlorothiazide can remarkably enhance the luminescence intensity of the Tb3+ ion doped in sol–gel matrix at λex = 370 nm. The intensity of the emission band of Tb3+ ion doped in sol–gel matrix was increased due to the energy transfer from the triplet excited state of Hydrochlorothiazide to (5D4) excited energy state of Tb3 ion. The enhancement of the emission band of Tb3+ ion doped in sol–gel matrix at (5D47 F5) 545 nm was directly proportion to the concentration of Hydrochlorothiazide with a dynamic ranges of 5.0 × 10−10—5.0 × 10−6 mol L−1 and detection limit of 2.2 × 10−11 mol L−1.  相似文献   

13.
A novel and simple fluorescence enhancement method for selective pyrophosphate(PPi) sensing was proposed based on a 1:1 metal complex formation between bis(8-hydroxy quinoline-5-solphonat) chloride aluminum(III) (Al(QS)2Cl), (L) and PPi in aqueous solution. The linear response range covers a concentration range of 1.6 × 10−7 to 1.0 × 10−5 mol/L of PPi and the detection limit of 2.3 × 10−8 mol/L. The association constant of L-PPi complex was calculated 2.6 × 105 L/mol. L was found to show selectively and sensitively fluorescence enhancement toward PPi over than I3-, NO3-, CN, CO32−, Br, Cl, F, H2PO4 and SO42−, which was attributed to higher stability of inorganic complex between pyrophosphate and L.  相似文献   

14.
Xu X  Zhang L  Shen D  Wu H  Liu Q 《Journal of fluorescence》2008,18(1):193-201
The serum albumin is the most abundant protein in blood plasma and the iron is essential for many cellular processes. However, the interaction between Fe3+ and haem-free serum albumin remains unclear. Here we provide evidence for the fact that haem-free BSA possesses one specific Fe3+-binding site. The binding of Fe3+ to BSA results in a significant quenching of the Trp fluorescence of BSA. The average apparent dissociation constant value for the interaction of Fe3+ and BSA is 3.46 × 10−8 ± 3 × 10−10 M at 37 °C and 3.30 × 10−8 ± 5 × 10−10 M at 25 °C, respectively, as determined by fluorescence titration. Addition of 50 μM Fe2+ to 1 μM BSA results in an obvious hysteretic effect on the fluorescence of BSA. The time-dependent fluorescence quenching of BSA by Fe2+ is not caused by the Fe2+-induced conformational change of BSA, but the oxygen-dependent oxidation of Fe2+ to Fe3+. Fe2+ undergoes an oxygen-dependent oxidation to Fe3+ under aerobic conditions, which is accelerated by the interaction of BSA with Fe3+ and extensively inhibited under anaerobic conditions. The results suggest that BSA may take part in non-transferrin bound iron transfer.  相似文献   

15.
A large stack of lead-emulsion sandwich detector assembly was flown over Hyderabad, India. High energy gamma rays at the float altitude were unambiguously identified from the cascades they induced, and their energies reliably determined by improved methods. From an analysis of 163 gamma rays of energy ≳ 30 GeV, it is found that the differential energy spectrum is represented by the power lawJ r (E)= 129·4E −2·62±0·12 photons m−2 sr−1sec−1 GeV−1 at an effective atmospheric depth of 14·3 g cm−2; this is the first reliable balloon measurement of atmospheric gamma rays in the energy range 40–1000 GeV. After correcting for the gamma rays radiated by the primary cosmic ray electrons, the production spectrum of gamma rays, resulting from the collisions of cosmic ray nuclei with air nuclei, at the top of the atmosphere isP r (E, 0)=8·2 × 10−4 E2.60±0.09 photons g−1sr−1sec−1 GeV−1. The atmospheric propagation of the electromagnetic component due to the cascade process is also derived from the gamma ray production spectrum.  相似文献   

16.
In our study, terbium-acetylacetone (Tb-acac) composite nanoparticles have been prepared under vigorous ultrasonic irradiation. The nanoparticles are water soluble, stable and have extremely narrow emission bands and high internal quantum efficiencies. They were used as fluorescence probes in the determination of enoxacin (Enox) based on the fluorescence enhancement of nanoparticles through fluorescence resonance energy transfer (FRET). The influence of buffer solution on the fluorescence intensity was investigated. Under the optimum conditions, the fluorescence intensity of the Tb-acac-Enox system is linearly proportional to the Enox concentration in the Enox concentration range of 2 × 10−7–1 × 10−4 M. The correlation coefficient for the calibration curve was 0.9976. The limit of detection as defined by IUPAC, C LOD = 3S b/m (where S b is the standard deviation of the blank signals and m is the slope of the calibration graph) was found to be 3 × 10−8 M. The relative standard deviation (RSD) for six repeated measurements of 1 × 10−4 M Enox was 1.35%. The method was applied to the determination of Enox in pharmaceutical formulation and recovery results were obtained from urine samples.  相似文献   

17.
Poly(squarate)s (PPS-1 and PPS-2) were synthesized by the reaction of squaryl dichloride with hydroquinone for PPS-1 and with 2,5-diethoxy-1,4-bis(trimethylsilyloxy)benzene for PPS-2, and the ionic conductivities, thermal properties, and electrochemical and thermal properties of their polymer electrolytes with LiN(CF3SO2)2 were investigated. The ionic conductivity increased with increasing the lithium salt concentration for the PPS-1–LiN(CF3SO2)2 electrolyte, and the highest ionic conductivities of 8.60 × 10−5 S/cm at 100 °C and 9.57 × 10−8 S/cm at 30 °C were found at the [Li] to [O] ratio of 2:1. And also, the ionic conductivity for the PPS-1–LiN(CF3SO2)2 electrolyte increased with an increase in the lithium salt concentration, reached a maximum value at the [Li] to [O] ratio of 1:2, and then decreased. The highest ionic conductivity was to be 1.04 × 10−5 S/cm at 100 °C and 1.71 × 10−8 S/cm at 30 °C, respectively. Both polymer electrolytes exhibited relatively better electrochemical and thermal stabilities. Addition of the PPS-1 as a plasticizer into the poly(ethylene oxide) (PEO)–LiN(CF3SO2)2 electrolyte system suppressed the crystallization of PEO, and improved the ionic conductivity at room temperature. Invited paper dedicated to Professor W. Weppner on his 65th birthday.  相似文献   

18.
The formation of a complex between ketoconazole and β-cyclodextrin was followed by spectrofluorimety. The inclusion of ketoconazole in β-cyclodextrin cavity enhanced the native fluorescence of the drug. The stoichiometry of the complex was 1:1 β-cyclodextrin to ketoconazole and the stability constant of the complex (log K f) was determined to be 4.3 ± 0.01 at pH = 7.9 and 3.7 ± 0.04 at pH = 2.6. A sensitive spectrofluorimetric method for the detection of ketoconazole is presented. At optimized experimental conditions, a linear relationship between the fluorescence intensity of the solution and concentration of ketoconazole is observed in the range of 0.01–10 μg ml−1 (5 × 10−8 M–1.88 × 10−5 M). The method was applied to the detection of ketoconazole in pharmaceutical products and the results were satisfactory in comparison to the official method (relative error = 2.8% and standard deviation = 0.06 for tablets of ketoconazole). The recovery of ketoconazole from a blood serum sample, determined by the proposed method, was 97.1 ± 2.4%.  相似文献   

19.
Glutathione capped CdTe quantum dots (QD) were synthesised using a simple experimental procedure and two samples were subjected of study (QD550 and QD600). The maximum of the excitation and emission spectra and the emission full width of half maximum of these two QD were: QD550, 307, 550 and 37 nm; QD600, 307, 600 and 39 nm. The steady state fluorescence properties of the two QD undergo variation when the pH of the aqueous solution is varied and are characterised by different apparent pKa: QD550, 5.2 ± 0.1; QD600, 6.3 ± 0.3. The fluorescence intensity of the QD550 is markedly quenched by the presence of micromolar quantities of Pb(II) ion (Stern–Volmer constant of about 7 × 105 M−1). PARAFAC analysis of the excitation emission matrices (EEM) of QD550 acquired as function of the Pb(II) ion showed that only one linearly independent component describes the quenching of the QD550 by the Pb(II) ion allowing robust estimation of the excitation and emission spectra and of the quenching profiles.  相似文献   

20.
Wang G  Wang L  Tang W  Hao X  Wang Y  Lu Y 《Journal of fluorescence》2011,21(5):1879-1886
The binding of quercetin to lysozyme (LYSO) in aqueous solution was investigated by fluorescence spectroscopy, UV-vis absorption spectroscopy and molecular simulation at pH 7.4. The fluorescence quenching of LYSO by addition of quercetin is due to static quenching, the binding constants, K a , were 3.63 × 104, 3.31 × 104 and 2.85 × 104 L·mol−1 at 288, 298 and 308 K, respectively. The thermodynamic parameters, enthalpy change, ∆H, and entropy change, ∆S, were noted to be −7.56 kJ·mol−1 and 61.07 J·mol−1·K−1. The results indicated that hydrophobic interaction may play a major role in the binding process. The distance r between the donor (LYSO) and acceptor (quercetin) was determined as 3.34 nm by the fluorescence resonance energy transfer. The synchronous fluorescence spectroscopy showed the polarity around the tryptophan residues increased and the hydrophobicity decreased. Furthermore, the study of molecular simulation indicated that quercetin could bind to the active site (a pocket made up of 24 amino-acid residues) of LYSO mainly via hydrophobic interactions and that there were hydrogen interactions between the residues (Gln 57, Ile 98) of LYSO and quercetin. The accessible surface area (ASA) calculation verified the important roles of tryptophan (Trp) residues during the binding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号