首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Physics Reports》1987,146(4):215-257
As the sky in the microwave band is dominated by a cosmic background, so too is the X-ray sky. In this report, the experimental approach used for measuring the X-ray background is explained and evaluated. The Compton-Getting interpretation of the dipole anisotropy in the microwave background is presented as a diagnostic of the weak asymmetry exhibited by the cosmic X-ray background. Spectral characteristics and spatial fluctuations of this X-ray background are described and then discussed within the context of what is known about individual extragalactic sources. It is concluded that the bulk of the cosmic X-ray background is yet to be understood. The critical apparatus of modern cosmology is reviewed and applied to this problem, providing constraints and indicating possible avenues for achieving a solution. The outlook for obtaining the new data called for is examined in terms of experiments now in preparation.  相似文献   

3.
Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.  相似文献   

4.
5.
范祖辉 《物理》2005,34(4):240-245
文章对微波背景辐射的各向异性、偏振及宇宙电离的历史给出了评述性介绍.从大爆炸理论的预言,到观测的发现,到其各向异性及偏振的探测,微波背景辐射(CMB)向人们揭示了丰富的宇宙学信息.文章在对基本理论作了简单介绍后,着重讲述了最新的CMB的观测结果及其物理意义.特别对微波背景各向异性探测器(Wilkinson Microwave Anisotropy Probe,WMAP)的偏振观测及其对宇宙重新电离的限制给出了较详细的叙述.  相似文献   

6.
范祖辉 《物理》2005,34(04):240-245
文章对微波背景辐射的各向异性、偏振及宇宙电离的历史给出了评述性介绍.从大爆炸理论的预言,到观测的发现,到其各向异性及偏振的探测,微波背景辐射(CMB)向人们揭示了丰富的宇宙学信息.文章在对基本理论作了简单介绍后,着重讲述了最新的CMB的观测结果及其物理意义.特别对微波背景各向异性探测器(Wilkinson Microwave Anisotropy Probe, WMAP)的偏振观测及其对宇宙重新电离的限制给出了较详细的叙述.  相似文献   

7.
The recent observation of the cosmic microwave background anisotropy by the WMAP confirmed that the lower multipoles are considerably suppressed. From the standpoint of the cosmic variance, it is nothing but a statistical accident. Alternatively, one can attribute the deficit of fluctuation on the large scale to the cosmic history, which might be explained in the context of the inflationary physics. In this Letter, we show that it is possible to explain the suppressed lower multipoles in the hybrid new inflation model.  相似文献   

8.
We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets. Indeed, if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.  相似文献   

9.
The thermal evolution of the cosmic gas decoupled from that of the cosmic microwave background (CMB) at a redshift z approximately 200. Afterwards and before the first stars had formed, the cosmic neutral hydrogen absorbed the CMB flux at its resonant 21 cm spin-flip transition. We calculate the evolution of the spin temperature for this transition and the resulting anisotropies that are imprinted on the CMB sky due to linear density fluctuations during this epoch. These anisotropies, at an observed wavelength of 10.56[(1+z)/50] m, contain an amount of information that is orders of magnitude larger than any other cosmological probe.  相似文献   

10.
We consider observational constraints on the creation of particles induced by hypothetical trans-Planckian effects during the current stage of the Universe’s expansion. We show that compatibility with the diffuse γ-ray background measured by the EGRET experiment strongly restricts this creation. In particular, it rules out the possibility of detecting signatures of such short-distance effects in anisotropies of the cosmic microwave background radiation. On the other hand, the possibility that some part of ultrahigh-energy cosmic rays originates from new trans-Planckian physics remains open.  相似文献   

11.
Big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the long-standing conclusion from BBN that baryons constitute a small fraction of matter in the Universe, but may indicate a slightly higher value for the baryon density. We clarify precisely what the two methods determine and point out that differing values for the baryon density can indicate either an inconsistency or physics beyond the standard models of cosmology and particle physics. We discuss other signatures of the new physics in CMB anisotropy.  相似文献   

12.
L SRIRAMKUMAR 《Pramana》2016,86(2):325-333
Observations of the imprints of primordial gravitational waves on the anisotropies in the cosmic microwave background can provide us with unambiguous clues to the physics of the very early Universe. In this brief article, the implications of the detection of such signatures for the inflationary scenario has been discussed.  相似文献   

13.
14.
We compare the latest cosmic microwave background data with theoretical predictions including correlated adiabatic and cold dark matter (CDM) isocurvature perturbations with a simple power-law dependence. We find that there is a degeneracy between the amplitude of correlated isocurvature perturbations and the spectral tilt. A negative (red) tilt is found to be compatible with a larger isocurvature contribution. Estimates of the baryon and CDM densities are found to be almost independent of the isocurvature amplitude. The main result is that current microwave background data do not exclude a dominant contribution from CDM isocurvature fluctuations on large scales.  相似文献   

15.
We discuss a unique possibility of generating adiabatic density perturbations and leptogenesis from the spatial fluctuations of the inflaton decay rate. The key assumption is that the initial isocurvature perturbations are created in the right-handed sneutrino sector during inflation which is then converted into adiabatic perturbations when the inflaton decays. We discuss distinct imprints on the cosmic microwave background radiation, which can distinguish nonthermal versus thermal leptogenesis.  相似文献   

16.
Brillouin scattering of photons off the density fluctuations in a fluid is potentially important for cosmology. We derive the Brillouin spectral distortion of blackbody radiation, and discuss the possible implications for the cosmic microwave background. The thermal Sunyaev-Zeldovich effect is slightly modified by Brillouin distortion, but only at very long wavelengths.  相似文献   

17.
Subhendra Mohanty 《Pramana》2000,54(1):93-100
I discuss basic theory of effect of the properties of the cosmological relict neutrinos on the observations of the cosmic microwave background anisotropy.  相似文献   

18.
The search for a theory that explains the origin of galaxies and large-scale structure in the Universe is at an exciting stage. Observational advances, including measurements of the anisotropy in the cosmic microwave background and systematic surveys of galaxy redshifts, are confronting theoretical calculations of the distribution of matter produced by the action of gravity on small initial density fluctuations in the expanding Universe. Although the basic idea behind most theoretical models is simple, the details are complicated and there are many unknown parameters, such as the quantity and type of dark matter forming the bulk of the mass of the Universe. Consequently, at present, there are a number of contenders for a theory of structure formation but no single model can fit all the observational data completely satisfactorily.  相似文献   

19.
We provide the gauge-invariant expression for large-scale cosmic microwave background temperature fluctuations at second-order perturbation theory. This enables us to define unambiguously the nonlinearity parameter f(NL), which is used by experimental collaborations to pin down the level of non-Gaussianity in the temperature fluctuations. Furthermore, it contains a primordial term encoding all the information about the non-Gaussianity generated at primordial epochs and about the mechanism which gave rise to cosmological perturbations, thus neatly disentangling the primordial contribution to non-Gaussianity from the one caused by the postinflationary evolution.  相似文献   

20.
We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号