首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
《Current Applied Physics》2018,18(2):246-253
A series of pure and iron doped strontium titanate, (SrFexTi1-xO3; x = 0, 0.1 and 0.2) powders were synthesized, characterized and used to fabricate ethanol sensors for low concentration. X-Ray Diffraction (XRD) technique was used to confirm the single phase formation. Microstructural properties of the powders were investigated using scanning electron microscopy (SEM). Electrical conductivity of all the samples at room temperature (RT) was measured. Sensors were optimized for best responsiveness by varying the operating temperature from 350 °C to 500 °C.The sensor with doping x = 0.2 exhibited best sensing response at 400 °C for ethanol gas. The undoped sensor demonstrated a decrease in resistance on exposure to ethanol gas whereas Fe-doped sensors showed increase in resistance. The doping induced changeover from n to p behavior in the sensing response on doping has been investigated and corroborated with an observed shift in the Fermi level position by X-ray photoelectron spectroscopy (XPS). The disparity in gas sensing response clearly demonstrates inter-connection of multiple influencing factors such as electrical conductivity, morphology, porosity and change in chemical composition on doping. The sensors were exposed to ethanol, nitrogen dioxide, carbon monoxide, butane gases at concentration between 5 ppm and 50 ppm. The sensor exhibited much reduced relative response to all gases other than ethanol which can be utilized for wide range of applications.  相似文献   

2.
《Current Applied Physics》2015,15(8):947-952
In2O3 nanowires functionalized with Fe2O3 nanoparticles were synthesized by the thermal evaporation of In2S3 powders in an oxidizing atmosphere followed by the solvothermal deposition of Fe2O3 and their acetone gas sensing properties were examined. The pristine and Fe2O3-functionalized In2O3 nanowires exhibited responses of 141–390% and 298–960%, respectively, to 10–500 ppm acetone at 200 °C. The Fe2O3-functionalized In2O3 nanowire sensor showed stronger electrical response to acetone gas at 200 °C than the pristine In2O3 nanowire counterpart. The former showed more rapid response but slower recovery than the latter. Both the pristine and Fe2O3-functionalized In2O3 nanowire sensors showed the strongest response to acetone gas at 200 °C. The underlying mechanism for the enhanced sensing performance of the Fe2O3-functionalized In2O3 nanowire sensor towards acetone gas is discussed.  相似文献   

3.
We developed new fast proton conducting membranes based on a hybrid inorganic–organic phosphosilicate polymer synthesized from othophosphoric acid, dichlorodimethylsilane, and tetraethoxysilane. The membranes were amorphous, translucent, and flexible. A high concentration of –OH groups and short distances between them promoted fast proton conductivity in dry atmosphere at increased temperatures. The proton conductivity was measured using the electrochemical impedance spectroscopy. Its value increased with rising temperature following the Arrhenius dependence with the activation energy 20 kJ/mol. In dry conditions at 120 °C, the conductivity was 1.6 S/m. The tests in a H2/O2 fuel cell confirmed that the membrane was able to operate at temperatures from 100 to 130 °C using dry input gas streams. The cell performance significantly improved with increasing temperature. The membrane was also tested in a potentiometric gas sensor with the TiHx reference electrode and the Pt sensing electrode. The sensor exhibited fast, stable, and reproducible response to dry H2 and O2 gases at temperatures above 100 °C. We expect the application of our membrane in intermediate temperature fuel cells and gas sensors operating in dry conditions.  相似文献   

4.
Nickel anodes were deposited on hollow fibre yttria-stabilised zirconia (YSZ) electrolyte substrates for use in solid oxide fuel cells (SOFCs). The hollow fibres are characterised by porous external and internal surfaces supported by a central gas-tight layer (300 μm total wall thickness and 1.6 mm external diameter). The YSZ hollow fibres were prepared by a phase inversion technique followed by high temperature sintering in the range 1200 to 1400 °C. Ni anodes were deposited on the internal surface by electroless plating involving an initial catalyst deposition step with PdCl2 followed by Ni plating (with a NiSO4, NaH2PO2 and sodium succinate based solution at 70 °C). Fabrication and nickel deposition parameters (nature of solvents, air gap, temperature, electroless bath composition) and heat treatments in oxidising/reducing environments were investigated in order to improve anode and electrolyte microstructure and fuel cell performance. A parallel study of the effect of YSZ sintering temperature, which influences electrolyte porosity, on electrolyte/anode microstructure was performed on mainly dense discs (2.3 mm thick and 15 mm diameter). Complete cells were tested with both disc and hollow fibre design after a La0.2Sr0.8Co0.8Fe0.2O3?δ (LSCF) cathode was deposited by slurry coating and co-fired at 1200 °C. Anodes prepared by Ni electroless plating on YSZ electrolytes (discs and hollow fibres) sintered at lower temperature (1000–1200 °C) benefited from a greater Ni penetration compared to electrolytes sintered at 1400 °C. Further increases in anode porosity and performance were achieved by anode oxidation in air at 1200–1400 °C, followed by reduction in H2 at 800 °C.  相似文献   

5.
《Solid State Ionics》2006,177(26-32):2413-2416
NH4PO3–(NH4)2SiP4O13 composite, a potential electrolyte for intermediate temperature fuel cells that operated around 250 °C, was synthesized with a solid-state reaction method. Electromotive forces (emfs) as measured with hydrogen concentration cells showed that the composite was a pure proton conductor at hydrogen partial pressure from 102 to 105 Pa. Its proton transference numbers were determined to be 1.0 at 150 °C, 0.99 at 200 °C, and 0.99 at 250 °C. Fuel cells that used NH4PO3–(NH4)2SiP4O13 as electrolytes were also fabricated. Maximum power density was 6.6 mW/cm2 at 250 °C when dry hydrogen and dry oxygen were used as the fuel and oxidant, respectively. Improved cell performance is expected by increasing cathode activity, increasing the electrolyte density, and decreasing the electrolyte thickness.  相似文献   

6.
A single Ce0.8Gd0.2O1.9 (CGO) buffer layer was successfully grown on the home-made textured Ni–5 at.%W (Ni–5W) substrates for YBCO coated conductors by a simple metal–organic deposition (MOD) technique. The precursor solution was prepared using a newly developed process and only contained common metal–organic salts of both Ce and Gd dissolved into a propionic acid solvent. The precursor solution at 0.4 M concentration was spin coated on short samples of Ni–5W substrates and heat-treated at 1100 °C in a mixture gas of 5% H2 in Ar for an hour. X-ray studies indicated that the CGO films had good out-of-plane and in-plane textures with full-width-half-maximum values of 4.18° and 6.19°, respectively. Atomic force microscope (AFM) investigations of the CGO films revealed that most of the grain boundary grooves on the Ni–5W surface were found to be well covered by CGO layers, which had a fairly dense and smooth microstructure without cracks and porosity. These results indicate that our MOD technique is very promising for further development of single buffer layer architecture for YBCO coated conductors, due to its low cost and simple process.  相似文献   

7.
In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.  相似文献   

8.
Using a low-cost hydrothermal method, we demonstrated the fabrication of phase pure rutile phase high-density vertically aligned TiO2 nanorods-based catalyst-free hydrogen (H2) gas sensor. The synthesized TiO2 nanorods on FTO are decorated with the aluminum interdigitated electrode pattern for electrical measurements. TiO2 nanorods-based hydrogen sensor showed the optimum response of ∼53.18% at 150 ppm H2 concentration relative to air at 100 °C. The measured response and recovery time of TiO2 nanorods are 85 and 620 s, respectively. The TiO2 nanorods-based H2 gas sensor showed a relatively better response, good reproducibility, and stability at moderate temperatures, i.e., 50 and 100 °C. The electrochemical impedance measurements showed a small variation in the surface characteristics of TiO2 nanorods before and after exposing H2 gas. The carrier lifetime at 50 °C and 100 °C at 150 ppm are 5 μs and 3 μs, respectively. Interestingly, H2 selectivity is also observed against H2S, CO, and NH3 gases, suggesting that high-density vertically aligned TiO2 nanorods can be a good candidate for efficient hydrogen sensing at relatively low temperatures.  相似文献   

9.
NiFe2O4 nanoparticles have been synthesized by co-precipitation method at 145°C in N2 atmosphere using ethylene glycol as solvent and capping agent. This gives the promising synthesis route for nanoparticles at low temperature. The as-synthesized NiFe2O4 is subsequently heated at 400°C, 500°C, 700°C and 800°C. Crystallite size increases with the heat treatment temperature. The heat treatment temperature has direct effect on the electron paramagnetic resonance and intrinsic magnetic properties. The room temperature Mössbauer spectrum of the 800°C heated sample shows the two sextets pattern indicating that the sample is ferrimagnetic and Fe3?+? ions occupy both tetrahedral and octahedral sites of spinel structure.  相似文献   

10.
A series of spinel oxy-fluorides with the formula LiMn1.8Li0.1Ni0.1O4 ? ηFη have been synthesized by both the conventional high-temperature (800 °C) firing method with LiF and a low temperature (450 °C) firing process with NH4HF2. Interestingly, the samples obtained by the high temperature (800 °C) procedure show no fluorine in the sample as revealed by the chemical analysis data, but an increase in lattice parameter and capacity values was observed due to a decrease in lithium content caused by the volatilization of LiF during the high temperature (800 °C) firing process. In contrast, the low-temperature fluorine doping approach was successful in incorporating fluorine into the spinel lattice, and the sample LiMn1.8Li0.1Ni0.1O3.85F0.15 exhibits a significant increase in discharge capacity compared to the oxide analog.  相似文献   

11.
The corundum structures of In2O3:Sn (ITO) nanoparticles were synthesized by hydrothermal processing of InCl3 and SnCl4·5H2O precursor at low temperature of 250 °C and 40 bar pressure for 3 h. The precursor was precipitated in a white gel of InOOH. After drying at 150 °C in air, it was crystallized in orthorhombic structure. InOOH powder was transformed into dark-gray rhombohedral In2O3 by sintering at 420 °C in forming gas for 1 h. The samples were characterized by means of XRD, SEM, and TEM. The particle size of the resulted ITO powder was about 32 nm.  相似文献   

12.
Following procedures formerly developed for the preparation of supported heterogeneous catalysts, carbon-coated cobalt nanoparticles dispersed on porous alumina have been prepared by impregnation of γ-Al2O3 with (NH4)2[Co(EDTA)] and thermal decomposition in inert atmosphere. Below 350 °C, Co(II) ions are complexed in a hexa-coordinated way by the EDTA ligand. The thermal treatment at 400–900 °C leads to the EDTA ligand decomposition and recovering of the support porosity, initially clogged by the impregnated salt. According to X-ray absorption spectroscopy, and due to in situ redox reactions between the organic ligand and Co(II), both oxidic and metallic cobalt phases are formed. Characterisation by transmission electron microscopy, X-ray diffraction and magnetic measurements reveals that an increase in the treatment temperature leads to an increase of the degree of cobalt reduction as well as to a growth of the cobalt metal particles. As a consequence, the samples prepared at 400–700 °C exhibit superparamagnetism and a saturation magnetisation of 1.7–6.5 emu g−1 at room temperature, whilst the sample prepared at 900 °C has a weak coercivity (0.1 kOe) and a saturation magnetisation of 12 emu g−1. Metal particles are homogeneously dispersed on the support and appear to be protected by carbon; its elimination by a heating in H2 at 400 °C is demonstrated to cause sintering of the metal particles. The route investigated here can be of interest for obtaining porous magnetic adsorbents or carriers with high magnetic moments and low coercivities, in which the magnetic nanoparticles are protected from chemical aggression and sintering by their coating.  相似文献   

13.
NiFe2O4 prepared via the sol–gel technique were pre-sintered at 900 °C and synthesized at different sintering temperatures from 1,000 °C to 1,200 °C at 100 °C intervals. The samples were characterized for microwave dielectric properties. These samples were measured using Agilent Impedance/Material Analyzer at frequencies 1 MHz to 1.8 GHz. Results showed a decrease in the dielectric constant and loss factor with frequency except at the turning point, around 150 MHz, where the loss factor showed a gradual increase. However, both the dielectric constant and loss factor increase with increasing sintering temperature. The grain size and density also increased with increasing sintering temperature, but the porosity and grain boundary density showed a decrease. This paper was presented at the International Conference on Solid State Science and Technology 2006, Kuala Terengganu, Malaysia, Sept. 4–6, 2006.  相似文献   

14.
NiO nanowires with high aspect ratio and dispersive distribution have been synthesized by a hydrothermal reaction of NiCl2 with Na2C2O4 and H2O in the simultaneous presence of ethylene glycol (EG) and polyethylene glycol (PEG). Then the products were obtained by the subsequent annealing at 400 °C in air. The effect of –OH from EG and –O– from PEG in the formation of nanowires was discussed. And the gas sensing properties of the as-prepared NiO nanowires toward ethanol were investigated. A novel formation mechanism of nanowires was presented and the NiO nanowires were proved to have an excellent gas sensing performance.  相似文献   

15.
V O2(A) nanobelts had been successfully synthesized by the transformation of V O2(B) using H2O as the solvent under the hydrothermal approach at 280 °C for 48 h. Some parameters, such as the reaction temperature and time, had been briefly discussed to reveal the transition from V O2(B) to V O2(A). It was found that H2O played a crucial role in the transition from V O2(B) to V O2(A). The phase transition of V O2(A) nanobelts was at 162 °C. The optical switching properties of V O2(A) were studied by the variable-temperature infrared spectra for the first time. In addition, V O2(A) nanobelts were calcined at 700 °C for 2 h under a high purity Ar (99.999%) atmosphere to obtain V O2(M) which exhibited a strong crystallographic transition at around 65 °C.  相似文献   

16.
TiO2 films were prepared by pulsed laser deposition using a metallic Ti target in an O2 gas ambient. The microstructure along with optical and photocatalytic properties of the deposited films were systematically studied by changing the deposition parameters and substrates. It was found that TiO2 films having nearly pure anatase phase grew effectively in O2 atmosphere. When the films were fabricated at a substrate temperature of 400°C, their phase structures were greatly affected by the O2 gas pressure, and nearly pure anatase phase with typical (101) and (004) peaks can be obtained under an O2 pressure of 15 Pa. For the deposition at 700°C, the crystal structure of the TiO2 films exhibited a strong anatase (004) peak and was inert to the oxygen pressures. Two modes, namely a substrate-temperature-controlled mode and an oxygen-pressure-controlled mode, were considered for the growth of the anatase TiO2 films under different substrate temperatures. In addition, the optical and photocatalytic properties were found to be sensitive to both the microstructure and grain size of the TiO2 films.  相似文献   

17.
《Solid State Ionics》2006,177(17-18):1437-1442
Pure and dense La2Mo2O9 ceramic electrolytes with grain sizes of 1–3 μm were fabricated from nanocrystalline powders by a novel three-stage, one-cycle, pressureless thermal processing method at temperatures as low as 600 °C. Phase formation, microstructure and grain size of the samples were examined using X-ray diffraction and scanning electron microscopy. Density of the sintered samples was determined as in the range of 94–96% of the theoretical density by weight/geometric measurements. Impedance spectroscopy was used to characterize the electrical properties of the sintered samples. The conductivity of the three-stage sintered samples reaches a value of 0.018 S/cm at 600 °C and 0.05 S/cm at 700 °C, much higher than that of the samples fabricated by conventional solid-state reaction method, but similar to that of the samples sintered at 950 °C for 12 h from the same nanocrystalline powders. The high conductivity of these samples was attributed to the co-operation of the excellent performance of nanocrystalline powders and the advantages of the novel three-stage low-temperature thermal processing.  相似文献   

18.
Ultralong ZnO nanowires were successfully synthesized by a simple hydrothermal reaction of Zn foil and aqueous Na2C2O4 solution at 140°C. The as-synthesized ZnO nanowires are single crystalline with the wurtzite structure and grow in the [0001] direction. The role of Na2C2O4 in the formation of ultralong ZnO nanowires was investigated, and a possible mechanism was also proposed to account for the formation of the ultralong ZnO nanowires. The gas sensor fabricated on the basis of the ultralong ZnO nanowires showed excellent response characteristics towards NH3 and N(C2H5)3 vapors with low concentration, and its detection limits for NH3 and N(C2H5)3 are about 0.2 and 0.15 ppm at the working temperature of 180°C, respectively. This result suggests potential applications of the ultralong ZnO nanowires in monitoring flammable, toxic and corrosive gases.  相似文献   

19.
Fine and uniform La0.6Sr0.4Co0.2Fe0.8O3−δ powder was synthesized by a glycine–nitrate combustion process. La0.6Sr0.4Co0.2Fe0.8O3−δ electrodes were prepared on dense Ce0.8Sm0.2O2−δ electrolyte substrates using a spin-coating technique by sintering at 900–1,000 °C. The electrode properties of La0.6Sr0.4Co0.2Fe0.8O3−δ were investigated by electrochemical impedance spectroscopy and chronopotentiometry techniques with respect to preparation conditions and the resulting microstructures. The results indicate a significant effect of the microstructure on the electrode processes and polarization characteristics. The oxygen adsorption and dissociation process acted as a larger contribution to the overall electrode polarization R p in magnitude compared with the charge transfer process due to relatively low porosity levels of the electrodes. It was detected that the grain size of the electrodes exhibited a crucial role on the electrocatalytic reactivity. At 800 °C, the electrode sintered at 950 °C attained a polarization resistance of 0.18 Ω cm2, an overpotential of 27 mV at a current density of 200 mA cm−2, and an exchange current density of 308 mA cm−2.  相似文献   

20.
Al2O3 was added to a 2CaO–La2O3–5P2O5 metaphosphate, to replace 10% of the Ca2+ ions by Al3+, forming a phosphate with the nominal composition 1.8CaO–0.1Al2O3–La2O3–5P2O5. The effect of Al2O3 addition and heat treatment on the microstructure and conductivity of the resulting glass–ceramics was investigated by XRD, SEM, TEM, and AC impedance spectroscopy. Upon transformation from glass to glass–ceramic, conductivities increased significantly. The glasses were isochronally transformed at 700 and at 800 °C for 1 h or 5 h, in air, following heating at 3 or 10 °C/min. With Al2O3 addition, after a heat treatment at 700 °C, 100–300 nm nano-domains of LaP3O9 crystallized from the glass matrix. Annealing at 800 °C produced a further order of magnitude conductivity increase for the Al-free glass, but less so for the Al-containing glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号