首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current Applied Physics》2020,20(8):994-1000
We report the influence of reactive oxygen (O2) and argon (Ar) plasma based ITO:Zr bi-layers for silicon heterojunction (SHJ) solar cells. The purpose of reactive O2 sputtered ITO:Zr was to improve the Hall mobility and work function while the Ar based ITO:Zr films play an important role to maintain good electrical characteristics. The thickness of reactive O2 based ITO:Zr films was fixed at 15 nm while Ar based films was varied from 65 to 125 nm, respectively. ITO:Zr bi-layers with the thickness of 15/105 nm deposited by O2 and Ar plasma, respectively, showed lowest resistivity of 2.358 × 10−4 Ω cm and high Hall mobility of 39.3 cm2/V · s. All ITO:Zr bi-layers showed an average transmittance of above 80% in the visible wavelength (380–800 nm) region. Work function of ITO:Zr bi-layers was calculated from the X-ray photoelectron spectroscopic (XPS) data. The ITO:Zr work function was enhanced from 5.3 eV to 5.16 eV with the variation of ITO:Zr bi-layers from 15/65 to 15/125 nm, respectively. Front barrier height in SHJ solar cells can be modified by using TCO films with high work function. The SHJ solar cells were fabricated by employing the ITO:Zr bi-layer as front anti-reflection coating. The SHJ solar cells fabricated on ITO:Zr bi-layer with the thickness of 15/105 nm showed the best photo-voltage parameters as; Voc = 739 mV, Jsc = 39.12 mA/cm2, FF = 75.97%, η = 21.96%.  相似文献   

2.
袁贺  孙长征  徐建明  武庆  熊兵  罗毅 《物理学报》2010,59(10):7239-7244
针对光电子器件端面抗反镀膜的要求,研究了基于等离子体增强化学气相沉积(PECVD)技术的多层抗反膜的设计和制作.首先,对影响SiNx折射率的因素进行了实验研究,确定了具有大折射率差的SiO2/SiNx材料的PECVD沉积条件.根据理论计算分析,设计了四层SiO2/SiNx抗反膜结构,能够在70 nm的波长范围内实现低于10-4的反射率  相似文献   

3.
In this paper we study the electro-optical behavior and the application of indium–tin oxide (ITO) and aluminum-doped zinc oxide (AZO) bilayer thin films for silicon solar cells. ITO–AZO bilayer thin films were deposited on glass substrates using radio-frequency magnetron sputtering. The experimental results show that a decrease in the electrical resistivity of the ITO–AZO bilayer thin films has been achieved without significant degradation of optical properties. In the best case the resistivity of the bilayer films reached a minimum of 5.075×10?4 Ω?cm when the thickness of the AZO buffer layer was 12 nm. The ITO–AZO bilayer films were applied as the front electrodes of amorphous silicon solar cells and the short-circuit current density of the solar cells was considerably increased.  相似文献   

4.
J.Y. Lee 《Optics Communications》2009,282(12):2362-3085
Sn doped In2O3 (ITO) single layer and a sandwich structure of ITO/metal/ITO (IMI) multilayer films were deposited on a polycarbonate substrate using radio-frequency and direct-current magnetron sputtering process without substrate heating. The intermediated metal films in the IMI structure were Au and Cu films and the thickness of each layer in the IMI films was kept constant at 50 nm/10 nm/40 nm. In this study, the ITO/Au/ITO films show the lowest resistivity of 5.6 × 10−5 Ω cm.However the films show the lower optical transmission of 71% at 550 nm than that (81%) of as deposited ITO films. The ITO/Cu/ITO films show an optical transmittance of 54% and electrical resistivity of 1.5 × 10−4 Ω cm. Only the ITO/Au/ITO films showed the diffraction peaks in the XRD pattern. The figure of merit indicated that the ITO/Au/ITO films performed better in a transparent conducting electrode than in ITO single layer films and ITO/Cu/ITO films.  相似文献   

5.
薛春荣  易葵  邵建达 《光子学报》2014,39(11):1961-1966
为了研制低损耗、高性能的157 nm薄膜,研究了常用的六种宽带隙氟化物薄膜材料.制备和研究了六种氟化物单层膜,并以不同高低折射率材料对,设计制备了157 nm高反膜和增透膜|讨论和比较了不同氟化物材料对所组成的高反膜和增透膜的反射率、透射率、光学损耗等特性.结果表明,采用NdF3/AlF3 材料对设计制备的157 nm高反膜的透过率为1.7%,反射率接近93%,散射损耗为2.46%,已经与吸收损耗相当|以AlF3/LaF3材料对设计制备的157 nm增透膜的剩余反射率低于0.17%.  相似文献   

6.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

7.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser. The films were deposited on SiO2 substrates heated at 200 and 400 °C. ITO and TiO2 films with uniform thicknesses of about 400 and 800 nm, respectively, over large areas were prepared. X-ray diffraction (XRD) analysis revealed that the ITO films are formed of highly orientated nanocrystals with an average particle size of 10-15 nm. Atomic force microscopy (AFM) observations indicate rough ITO films surfaces with average roughness of 26-30 nm. Pores were also observed. TiO2 films deposited on the prepared ITO films result less crystalline. Annealing at 300 and 500 °C for three consecutive hours promoted formation of TiO2 anatase phase, with crystal size of ∼6-7 nm. From the scanning transmission electron microscope (STEM) images, it can be seen that the TiO2 films deposited onto the prepared ITO films present a relatively high pore sizes with an average pore diameter of ∼40 nm and excellent uniformity. In addition, STEM cross-sectional analysis of our films showed a columnar structure but no evidence of voids in the structure. Therefore, films exhibited large surface area, well suited for dye-sensitized solar cells (DSSC) applications.  相似文献   

8.
Thin films with a low refractive index play an important role in optics, optoelectronics, and microelectronics. In this study, we present nanostructured porous SiO2 films fabricated by using a glancing angle deposition technique. These nanostructured porous SiO2 films deposited at an angle of 85° show very low refractive indices of 1.08 at 633 nm. As an application, a four-layer antireflection coating for visible wavelength is designed and fabricated using SiO2 material only. The normal incidence reflectance of the antireflection coating averaged between 400 and 800 nm is about 0.04%. The microstructure and the surface morphology are also investigated by using a scanning electron microscope.  相似文献   

9.
Indium tin oxide (ITO) thin films prepared by the sol–gel method have been deposited by the dip-coating process on silica substrates. CO2 laser is used for annealing treatments. The electrical resistivity of sol–gel-derived ITO thin films decreased following crystallization after exposure to CO2 laser beam. The topological and electrical properties of the irradiated surfaces have been demonstrated to be strongly related to the coating solution and to the laser processing parameters. Optimal results have been obtained for 5 dip-coating layers film from 0.4 mol/l solution irradiated by 0.6 W/m2 laser power density. In this case, homogeneous and optically transparent traces were obtained with a measured sheet resistance of 1.46×102 Ω/□.  相似文献   

10.
Transparent conductive tin-doped indium oxide (In2O3:Sn, ITO) thin films with various Sn-doping concentrations have been prepared using the low cost reactive thermal evaporation (RTE) technique at a low growth temperature of ~160 °C. The structural characteristics, optical and electrical properties of the ITO thin films were investigated. These polycrystalline ITO films exhibited preferential orientation along (222) plane and possessed low resistivities ranging from 3.51 to 5.71 × 10?4 Ω cm. The decreased mobility was attributed to the scattering by ionized and neutral impurities at high doping concentrations. The optimized ITO thin film deposited with 6.0 wt% Sn-doping concentration exhibited a high average transparency of 87 % in the wavelength range of 380–900 nm and a low resistivity of 3.74 × 10?4 Ω cm with a high Hall mobility of 47 cm2 V?1s?1. A hydrogenated amorphous silicon and silicon–germanium (a-Si:H/a-SiGe:H) double-junction solar cell fabricated with the RTE-grown ITO electrodes presented a conversion efficiency of 10.51 %.  相似文献   

11.
Indium tin oxide (ITO) films approximately 120 nm thick were deposited onto unheated glass substrates by using reactive thermal evaporation (RTE) and in situ post-evaporation annealing in oxygen. We show that this simplified method can be used to produce high quality ITO thin films with low electrical resistivity (10−3 Ω cm) and high transmittance (approximately 80% at 550 nm). The refractive index is approximately 2.0 and the direct optical band gap of the films (above 3.0 eV) is in good agreement with previously reported values. Since this deposition method does not require heating the substrates or furnace annealing at high temperatures, it can be advantageous when it is necessary to decrease the thermal budget on underlying devices or layers.  相似文献   

12.
In2O3:Sn (Indium Tin Oxide; ITO) films were prepared from a sol solution with highly crystalline ITO nanoparticles (less than 20 nm in size with 10 at.% Sn) which had been prepared by low-pressure spray pyrolysis (LPSP) in a single step. The ITO sol solution was prepared by dispersing LPSP-prepared ITO nanoparticles into ultra pure water. The nanoparticle ITO film was deposited on a glass substrate using a dip-coating method and then annealed in air at various temperatures. The optical transmittances of the ITO films were measured by UV–Vis spectrometry, and the films were found to have a high transparency to visible light (in the case of a film thickness of 250 nm annealed at 400°C, the transparency was in excess of 95% over the range λ=450–800 nm, with a maximum value near 100% at wavelengths above λ=700 nm). The optical transmittances of the films were influenced by the size of the ITO particle used, the film thickness and the annealing temperature. The ITO films showed a minimum resistivity of 9.5×10−2 Ω cm, and their resistivity was affected by both the ITO particle size and the annealing temperature used.  相似文献   

13.
Low refractive index polymer materials have been investigated with a view to form the back surface mirror of advanced silicon solar cells. SiOx:H or AlOy SiOx:H polymer films were spun on top of an ultra‐thin (<10 nm) atomic‐layer‐deposited (ALD) Al2O3 layer, itself deposited on low‐resistivity (1 Ω cm) p‐type crystalline silicon wafers. These double‐layer stacks were compared to both ALD Al2O3 single layers and ALD Al2O3/plasma‐enhanced chemical vapour deposited (PECVD) SiNx stacks, in terms of surface passivation, firing stability and rear‐side reflection. Very low surface recombination velocity (SRV) values approaching 3 cm/s were achieved with ALD Al2O3 layers in the 4–8 nm range. Whilst the surface passivation of the single ALD Al2O3 layer is maintained after a standard firing step typical of screen printing metallisation, a harsher firing regime revealed an enhanced thermal stability of the ALD Al2O3/SiOx:H and ALD Al2O3/AlOy SiOx:H stacks. Using simple two‐dimensional optical modelling of rear‐side reflection it is shown that the low refractive index exhibited by SiOx:H and AlOy SiOx:H results in superior optical performance as compared to PECVD SiNx, with gains in photogenerated current of ~0.125 mA/cm2 at a capping thickness of 100 nm. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Fe-doped mesoporous titanium dioxide (M-TiO2-Fe) thin films have been prepared on indium tin oxide (ITO) glass substrates by sol–gel and spin coating methods. All films exhibited mesoporous structure with the pore size around 5–9 nm characterized by small angle X-ray diffraction (SAXRD) and further confirmed by high resolution transmission electron microscopy (HRTEM). Raman spectra illustrated that lower Fe-doping contributed to the formation of nanocrystalline of M-TiO2-Fe thin films. X-ray photoelectron spectroscopy (XPS) data indicated that the doped Fe ions exist in forms of Fe3+, which can play a role as e or h+ traps and reduce e/h+ pair recombination rate. Optical properties including refractive indices/n, energy gaps/Eg and Urbach energy width/E0 of the thin films were estimated and investigated by UV/vis transmittance spectra. The presence of Fe content extended the light absorption band and decreased the values of n, implying enhanced light response and performance on dye-sensitized solar cells (DSSC). The optimum Fe content in M-TiO2-Fe thin films is determined as 10 mol%, for its compatibility of well crystalline and well potential electron transfer performance.  相似文献   

15.
Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca10(PO4)6(OH)2, or bioglasses in the system SiO2-Na2O-K2O-CaO-MgO-P2O5 with SiO2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H2O vapors, while the bioglass layers were deposited in O2. Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications.  相似文献   

16.
Platinum intermediate transparent and conducting ITO/metal/ITO (IMI) multilayered films were deposited by RF and DC magnetron sputtering on polycarbonate substrates without intentional substrate heating. Changes in the microstructure and optoelectrical properties of the films were investigated with respect to the thickness of the intermediate Pt layer in the IMI films. The thickness of Pt film was varied from 5 to 20 nm.In XRD measurements, neither ITO single-layer films nor IMI multilayer films showed any characteristic diffraction peaks for In2O3 or SnO2. Only a weak diffraction peak for Pt (1 1 1) was obtained in the XRD spectra. Thus, it can be concluded that the Pt-intermediated films in the IMI films did not affect the crystallinity of the ITO films. However, equivalent resistivity was dependent on the presence and thickness of the Pt-intermediated layer. It decreased as low as 3.3×10−4 Ω cm for ITO 50 nm/Pt 20 nm/ITO 30 nm films. Optical transmittance was also strongly influenced by the Pt-intermediated layer. As Pt thickness in the IMI films increased, optical transmittance decreased to as low as 30% for ITO 50 nm/Pt 20 nm/ITO 30 nm films.  相似文献   

17.
Transparent and conducting indium tin oxide (ITO) thin films were deposited on soda lime glass substrates by RF plasma magnetron sputtering at room temperature. The effect of thickness (100, 200 and 300?nm) on the physical (structural, optical, electrical) properties of ITO thin films was investigated systematically. It is observed that with an increase in thickness, the X-ray diffraction data indicate polycrystalline films with grain orientations predominantly along (222) and (400) directions; the average grain size increases from 10 to 30?nm; the optical band gap increases from 3.68 to 3.73?eV and the transmission decrease from 80% to 70% . Four-point probes show a low resistivity (2.4×10?5?Ω?cm) values for film with a thickness 300?nm. Present work shows that the ITO is a promising transparent conductive oxide material for the solar cell application.  相似文献   

18.
Transparent conducting indium oxide (In2O3) thin films have been prepared on glass substrates by the simple sol-gel-spin coating technique. These films have been characterized by X-ray diffraction, resistivity and Hall effect measurements, optical transmission, scanning electron microscopy and atomic force microscopy for their structural, electrical, optical and morphological properties. The influence of spin parameters, number of coating, process temperature on the quality of In2O3 films are studied. In the operating range of deposition, 400-475 °C, all the films showed predominant (2 2 2) orientation. Films deposited at optimum process conditions exhibited a resistivity of 2×10−2 Ω cm along with the average transmittance of about 80% in the visible spectral range (400-700 nm).  相似文献   

19.
朱燕艳  方泽波  刘永生 《中国物理 B》2010,19(9):97807-097807
This paper reports that stoichiometric, amorphous, and uniform Er2O3 films are deposited on Si(001) substrates by a radio frequency magnetron sputtering technique. Ellipsometry measurements show that the refractive index of the Er2O3 films is very close to that of a single layer antireflection coating for a solar cell with an air surrounding medium during its working wavelength. For the 90-nm-thick film, the reflectance has a minimum lower than 3% at the wavelength of 600 nm and the weighted average reflectances (400-1000 nm) is 11.6%. The obtained characteristics indicate that Er2O3 films could be a promising candidate for antireflection coatings in solar cells.  相似文献   

20.
In this paper designing, preparation and characterization of multifunctional coatings based on TiO2/SiO2 has been described. TiO2 was used as a high index material, whereas SiO2 was used as a low index material. Multilayers were deposited on microscope slide substrates by microwave assisted reactive magnetron sputtering process. Multilayer design was optimized for residual reflection of about 3% in visible spectrum (450–800 nm). As a top layer, TiO2 with a fixed thickness of 10 nm as a protective film was deposited. Based on transmittance and reflectance spectra, refractive indexes of TiO2 and SiO2 single layers were calculated. Ultra high vacuum atomic force microscope was used to characterize the surface properties of TiO2/SiO2 multilayer. Surface morphology revealed densely packed structure with grains of about 30 nm in size. Prepared samples were also investigated by nanoindentation to evaluate their protective performance against external hazards. Therefore, the hardness of the thin films was measured and it was equal to 9.34 GPa. Additionally, contact angle of prepared coatings has been measured to assess the wetting properties of the multilayer surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号