首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Comptes Rendus Chimie》2015,18(3):250-260
CuO–ZnO–Al2O3 catalysts were synthesized by two methods, sol–gel and co-precipitation syntheses. Al2O3 was then substituted with other supports, such as ZrO2, CeO2 and CeO2–ZrO2 in order to have a better understanding of the support's effect. These catalysts containing 30 wt% of Cu were then tested for CO2 hydrogenation into methanol. The effect of reaction temperature and GHSV on the catalytic behaviour was also investigated. The best results were obtained with a 30 CuO–ZnO–ZrO2 catalyst synthesized by co-precipitation and calcined at 400 °C. This catalyst presents a good CO2 conversion rate (23%) with 33% of methanol selectivity, leading to a methanol productivity of 331 gMeOH.kgcata−1·h−1 at 280 °C under 50 bar and a GHSV of 10,000 h−1.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(11):1205-1210
Nickel–aluminium and magnesium–aluminium hydrotalcites were prepared by co-precipitation and subsequently submitted to calcination. The mixed oxides obtained from the thermal decomposition of the synthesized materials were characterized by XRD, H2-TPR, N2 sorption and elemental analysis and subsequently tested in the reaction of methane dry reforming (DRM) in the presence of excess of methane (CH4/CO2/Ar = 2/1/7). DMR in the presence of the nickel-containing hydrotalcite-derived material showed CH4 and CO2 conversions of ca. 50% at 550 °C. The high values of the H2/CO molar ratio indicate that at 550 °C methane decomposition was strongly influencing the DRM process. The sample reduced at 900 °C showed better catalytic performance than the sample activated at 550 °C. The catalytic performance in isothermal conditions from 550 °C to 750 °C was also determined.  相似文献   

3.
In this work, the potential of modified multiwalled carbon nanotubes for separation and preconcentration of trace amounts of manganese ion is studied. Multiwalled carbon nanotubes were oxidized with concentrated HNO3 and then modified with loading 1-(2-pyridylazo)-2-naphtol. Mn(II) ions could be quantitatively retained by modified multiwalled carbon nanotubes in the pH range of 8–9.5. Elution of the adsorbed manganese was carried out with 5.0 mL of 0.1 mol L?1 HNO3. Detection limit is 0.058 ng mL?1 and analytical curve is linear in the range of 0.1 ng mL?1–5.0 μg mL?1 in the initial solution with a correlation coefficient 0.9977 and the preconcentration factor is 100. Relative standard deviation for eight replicate determination of 0.5 μg mL?1 of manganese in the final solution is 0.41%. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions, were studied for preconcentration of Mn(II) ions in detail to optimize the conditions. The method was successfully applied for separation, preconcentration and determination of manganese in different samples.  相似文献   

4.
Manganese(II) complex of (E)-2-(hydroxyl-5-methoxybenzylideneamino) phenol was synthesized and used as a suitable Mn(II) – selective membrane in PVC matrix. The plasticized membrane sensor exhibits a nersian response for Mn(II) ions over a wide concentration range of 6 × 10?6–2 × 10?2 M with slope of 29 ± 1 mV per decade. It has a response time of <11 s and can be used for 2 months without any measurable divergence in potential. The response of the proposed sensor is independent of pH between 4 and 9.5. The proposed sensor shows a fairly good discriminating ability towards Mn(II) in comparison with some hard and soft metals. The electrode was used in the determination of Mn(II) in aqueous solutions and as an indicator electrode in potentiometer titration of manganese ions against EDTA.  相似文献   

5.
《Comptes Rendus Chimie》2015,18(3):293-301
Dry reforming of methane has been carried out on SBA-15 catalysts containing 5 wt% Ni and 6 wt% Ce. The effect of the order of Ni and Ce impregnation on the catalytic activity has been studied. Both metals were added using the “two-solvent” method that favors metal dispersion inside the pores. Characterizations by XRD (low and high angles), N2 sorption, SEM and TEM of the materials after metal addition and calcination indicate good preservation of the porosities and high NiO and CeO2 dispersion inside the porous channels. Reduction was carried out before the catalytic tests and followed by TPR measurements. The most active reduced catalyst was the Ni–Ce/SBA-15 sample prepared by impregnating cerium first, then nickel. All catalysts were highly active and selective towards H2 and CO at atmospheric pressure. Full CH4 conversion was obtained below 650 °C. The higher performances compared to those reported in the literature for mesoporous silica with supported Ni and Ce catalysts are discussed.  相似文献   

6.
《Comptes Rendus Chimie》2015,18(12):1264-1269
A one-step CO2 hydrogenation reaction into hydrocarbons (HC) using a bifunctional system constituted by a methanol synthesis catalyst [Cu–ZnO–Al2O3 (CZA)] and a zeolite (HZSM-5) has been studied. The influence of the catalyst bed configuration on activity, selectivity, and HC yield has been evaluated. The results obtained at TR = 623 K, PR = 3.0 MPa and WHSV = 6000 h−1 show that CO2 hydrogenation and hydrocarbon selectivity were strongly influenced by the proximity between oxide and zeolite, whatever the disposition of the two catalytic active sites. Indeed, the highest conversion and the best yield of hydrocarbons (mainly C2) were obtained with the M1 bifunctional catalysts in which the oxide–zeolite proximity is the lowest. This is ascribed to the hydrogen spillover phenomenon, which does not promote the carbon chain growth.  相似文献   

7.
Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD) and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.  相似文献   

8.
《Polyhedron》2005,24(16-17):2242-2249
Two heterobimetallic coordination polymers, [Cu(2,4-pydc)2Mn(H2O)4]x (1) and [Cu(2,5-pydc)2Mn(H2O)2]x · 4xH2O (2), have been synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds have extended 2-D sheet structures. In 1 the copper centers are linked in chains by double ligand bridges and these chains are cross-linked through the manganese coordination spheres and O–C–O bridges to form polymeric sheets. In 2 separate O–C–O bridged Cu and Mn chains are connected in an alternating array by additional ligand bridging to generate the overall 2-D structure. Analysis of magnetic data of 1 reveals that ferromagnetic exchange between the O–C–O bridged copper and manganese centers dominates the magnetic properties of this system. The magnetic data for 2 fit well to a model incorporating antiferromagnetic exchange in independent S = 1/2 and S = 5/2 linear chains with J(Cu) = −0.073 cm−1 and J(Mn) = −0.32 cm−1. Unlike the situation in 1, there is no evidence for heterometallic exchange. In both 1 and 2 the significant exchange occurs via O–C–O bridges. To study the effect of thermal dehydration on the magnetic properties of these systems, the compounds Cu(2,4-pydc)2Mn · H2O (1d) and Cu(2,5-pydc)2Mn · H2O (2d) were synthesized and studied.  相似文献   

9.
Three manganese (III) complexes were obtained with H2Salen derivatives and used as catalysts in the epoxidation reactions of E- and Z-stilbene isomers. The preparative electrolyses were carried out at 25 °C in acetonitrile solution containing 0.1 M TBAP, 10−3 M complex, 10−2 M 2-methylimidazole and 0.1 M benzoic anhydride plus stilbene as substrate. Our results showed clearly that E-stilbene was totally converted to Z-stilbene oxide whereas Z-stilbene leads to a mixture in which the benzaldehyde was the major by-product. In our experimental conditions, the turnovers recorded for different experiments were located in the 3.7–6.6 range.  相似文献   

10.
A new Mn (III) Schiff-base coordination compound, [Mn(L)(NCS)]2 (H2L = N,N′-bis(5-chlorosalicylidene)-1,2-diaminoethane), has been synthesized and characterized structurally and magnetically. The target compound is a phenoxo-bridged dimeric compound with the isothiocyanate coordinating in a usual bent mode. A magnetic susceptibility study reveals that the target compound exhibits antiferromagnetic intra-dimer coupling between Mn (III) ions. The low temperature heat capacity of the compound over the temperature range (2 to 300) K has been measured using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). The thermodynamic functions in the experimental temperature range have been determined by curve fitting. The standard entropy and enthalpy of the as-prepared compound at T = 298.15 K have been calculated to be (924.52 ± 10.17) J · K−1 · mol−1 and (133.47 ± 1.47) kJ · mol−1, respectively.  相似文献   

11.
The influence of bismuth addition on the activity and selectivity of palladium catalysts supported on SiO2 in the reaction of glucose oxidation to gluconic acid was studied. The catalysts modified with Bi show much better selectivity and activity than palladium catalysts. The XRD studies proved the presence of intermetallic compounds BiPd and Bi2Pd, which probably increase activity and selectivity of PdBi/SiO2 catalysts in the oxidation of glucose. The TPO studies of catalysts containing 5 wt.% Pd/SiO2, 3 wt.% Bi/SiO2 and 5 wt.% Pd–5 wt.% Bi/SiO2 show that palladium oxidation occurs at much higher temperatures than in the case of bismuth. The maximum rate of Pd oxidation occurs at around 580 K while the maximum rate of Bi oxidation takes place at around 430 K. Considering the above facts, a reaction involving bimetallic catalysts in oxidizing atmosphere at 333 K should not lead to surface oxidation of palladium and thus their deactivation.  相似文献   

12.
13.
The synthesis of trifluoroacetaldehyde by vapor-phase oxidation of 2,2,2-trifluoroethanol using supported vanadium catalysts was studied. Significant differences were observed in the reaction outcomes resulting from different types of catalysts. The ZrO2- and Al2O3-supported catalyst demonstrated both high catalytic activity and selectivity. The addition of co-catalysts such as MoO3 or SnO2 improved catalytic performance (Selectivity: up to 91%; S.T.Y.: >200 g L−1 h−1). The experimental results on catalyst lifetime showed a marked decrease in the activity of the Al2O3-supported catalyst within tens of hours, while the ZrO2-supported catalyst showed little, if any, performance alterations for 2000 h.  相似文献   

14.
We present a binder-free catalytic anode for highly efficient and stable oxygen evolution reaction in alkaline media. The catalyst consists of a thin film of buserite-type layered manganese dioxide (MnO2) intercalated with Co2 + ions, resulting from electrodeposition of the layered MnO2 film with tetrabutylammonium (Bu4N+) ions on a carbon cloth, followed by ion-exchange of the initially incorporated Bu4N+ with Co2 + in solution. The electrode is capable to produce a current density of 10 mA cm 2 at an overpotential (η) of 377 mV with a Tafel slope of 48 mV dec 1, much superior to the layered MnO2 without Co2 +.  相似文献   

15.
A nanocomposite of potassium manganese ferrocyanide and graphene (12% C, 88% K1.8Mn1.1Fe(CN)6 0.27H2O) was prepared by ball milling of graphene oxide powder and nanoparticles of manganese–iron Prussian Blue. It exhibits enhanced electrochemical performance compared to pure Prussian Blue with a specific capacity of 150 mAhg 1 at average 3.8 V vs. Li+/Li and a good cyclability. The nanocomposite can be considered as competitive to standard cathode materials of present rechargeable lithium ion batteries like cobalt oxide, iron phosphate or NMC.  相似文献   

16.
Catalytic generation of hydrogen by steam reforming of acetic acid over a series of Ni–Co catalysts have been studied. The catalyst with the molar ratio of 0.25:1 between Ni and Co was superior to other catalysts. The effects of reaction temperature, liquid hourly space velocity (LHSV) and molar ratios of steam-to-carbon (S/C) were studied in detail over this catalyst. At T = 673 K, LHSV = 5.1 h−1, S/C = 7.5:1, the catalyst exhibited the best performances. Acetic acid was converted completely to hydrogen, while H2 selectivity reached up to 96.3% and CO2 selectivity up to 98.1% was obtained, respectively. Ni–Co catalyst showed rather stable performances for the 70 h time-on-stream without any deactivation.  相似文献   

17.
In 0.2 mol/L HCl–0.22 mol/L HNO3 medium, trace Hg2+ catalyzed NaH2PO2 reduction of HAuCl4 to form gold nanoparticles (AuNPs), which exhibited a strong resonance Rayleigh scattering (RRS) effect at 370 nm. With increasing of [Hg2+], the RRS effect enhanced due to more AuNP generated from the catalytic reaction. Under the chosen conditions, the enhanced RRS intensity at 370 nm is linear to Hg2+ concentration in the range of 5.0–450 × 10−9 mol/L, with a detection limit of 0.1 nmol/L. This RRS method was applied for the determination of Hg in water samples, with high sensitivity and good selectivity, and its results were agreement with that of atomic fluorescence spectrometry.  相似文献   

18.
A simple and efficient procedure for separation and pre-concentration using ultrasound-assisted co-precipitation with manganese dioxide was developed for Pb determination by inductively coupled plasma optical emission spectrometry (ICP OES). The optimization process was carried out using a two-level factorial design and a Doehlert matrix. Three variables (i.e. concentration of oxidizing solution—KMnO4, concentration of MnSO4 solution and time of ultrasonic irradiation) were used as factors in the optimization. The recoveries, based on the analysis of spiked samples, were between 90% and 105%, and the precision was ≤ 5%. The detection limit and quantification limit for Pb determination were 3.2 and 10.7 μg L 1, respectively. The proposed method was applied for the determination of Pb in water samples from a river heavily polluted by industrial effluents. The recovery measured by analyte addition technique showed that the proposed pre-concentration method had good accuracy.  相似文献   

19.
Faujasite-type zeolite membranes were reproducibly synthesized by hydrothermal reaction on the outer surface of a porous α-alumina support tube of 30 or 200 mm in length. The membrane properties were evaluated by CO2 separation from an equimolar mixture of CO2 and N2 at a permeation temperature of 40°C. CO2 permeance and CO2/N2 selectivity of the NaY-type membranes were in the ranges of 0.4×10−6–2.5×10−6 mol m−2 s−1 Pa−1 and 20–50, respectively. The NaY-type membranes were ion-exchanged with alkali and alkaline earth cations. The LiY-type membrane showed the highest N2 permeance and the lowest CO2/N2 selectivity. The KY-type membrane gave the highest CO2/N2 selectivity. The NaY-type membrane was stable against exposure to air at 400°C. NaX-type zeolite membranes, formed by decreasing the ratio of SiO2/Al2O3 in the starting solution, exhibited lower CO2 permeances and higher CO2/N2 selectivities than those of the NaY-type zeolite membranes.  相似文献   

20.
The kinetics of the reduction of water-soluble colloidal manganese dioxide by glycyl-leucine (Gly-Leu) has been investigated in the presence of perchloric acid both in aqueous as well as micellar media at 35 °C. The study was carried out as functions of [MnO2], [Gly-Leu] and [HClO4]. The first-order-rate is observed with respect to [MnO2], whereas fractional-order-rates are determined in both [Gly-Leu] and [HClO4]. Addition of sodium pyrophosphate and sodium fluoride enhanced the rate of the reaction. Further, the use of surfactant micelles is highlighted as, in favourable cases, the micelles help the redox reactions by bringing the reactants into a close proximity due to hydrogen bonding. While the ionic surfactants SDS and CTAB have not shown any effect on the reaction rate, the nonionic surfactant TX-100 has catalytic effect which is explained in terms of the mathematical model proposed by Tuncay et al. (1999). The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ΔH#, ΔS# and ΔG#) have been evaluated. Kinetic studies show that the redox reaction between MnO2 and Gly-Leu proceeds through a mechanism combining one- and two-electron pathways: Mn(IV)  Mn(III)  Mn(II) and Mn(IV)  Mn(II). On the basis of the observed results, a possible mechanism has been proposed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号