首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In this study, we have computed the structural, electronic and half-metallic ferromagnetic properties of Ca1?xTixO compounds at concentrations x?=?0.125, 0.25, 0.5 and 0.75 by employing the first-principle approaches of density functional theory. The generalised gradient approximation of Wu and Cohen (GGA-WC) is used to calculate the structural parameters, whereas the electronic structures and magnetic properties are characterised by the accurate Tran–Blaha-modi?ed Becke–Johnson potential (TB-mBJ). The lattice constant, bulk modulus and indirect gap of CaO are in good agreement with other theoretical and experimental results. The Ca0.25Ti0.75O at x?=?0.75 has metallic ferromagnetic nature. The Ca0.875Ti0.125O, Ca0.75Ti0.25O and Ca0.50Ti0.50O compounds have total magnetic moments of 2?μB per Ti atom with a half-metallic character, a spin polarisation of 100% and a large half-metallic gap of 1.345?eV for x?=?0.125. Therefore, the Ca1?xTixO material with a low concentration of Ti is a true half-metallic ferromagnet and seems to be a promising candidate for semiconductor spintronics.  相似文献   

2.
The electronic structure and magnetic properties of the Ti2CoB Heusler compound with a high-ordered CuHg2Ti structure were investigated using the self-consistent full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT). Spin-polarized calculations show that the Ti2CoB compound is half-metallic ferromagnetic with a magnetic moment of 2 μB at the equilibrium lattice constant, a=5.74 Å. The Ti2CoB Heusler compound is ferromagnetic below the equilibrium lattice constant and ferrimagnetic above the equilibrium lattice constant. A large peak in majority-spin DOS and an energy gap in minority-spin DOS are observed at the Fermi level, yielding a spin polarization of 100%. A spin polarization higher than 90% is achieved for a wide range of lattice constants between 5.6 and 6.0 Å.  相似文献   

3.
Electronic structures of the Co2FeAl(0 0 1) surface are studied theoretically via first-principles calculations based on density functional theory. It is found that the minority spin band gap at the Fermi level in bulk Co2FeAl disappears at the surface due to space localization of the states. However, beneath the surface, the density of states of individual atoms shows a trend of minority spin gap opening at the Fermi level, which indicates that the electronic structures become close to that of bulk Co2FeAl. The termination of FeAl is more favorable for spin polarization of Co2FeAl films than that of Co. Accordingly, we present a composite tri-layer model to illustrate the fading of the half-metallic property in Co2FeAl films against the ideal character in bulk materials.  相似文献   

4.
The electronic structures of CaCu3Mn4O12 and CaCu3Ti4O12 are investigated from HF SCF LCAO calculation. In CaCu3Mn4O12, the band and the density of states show a spin asymmetric ferrimagnetic character with a small energy gap. The Mn spin is anti-aligned with the Cu spin, and the total spin moment is 9 μB. Our calculation correctly reproduces the observed antiferromagnetic insulating character of CaCu3Ti4O12. The gap in the band structure, which is 2.15 eV, reasonably agrees with the experimental value 1.5 eV. The electron density populations at different planes show clearly that the electron density has symmetric character. A tilted Mn(Ti) orbital implies a typical tilted three-dimensional network of MnO6 (TiO6) octahedra due to doping of the Jahn–Teller ion Cu. There is no covalency between Ca, Cu and Mn(Ti) atoms. In contrast, there are stronger bonds and somewhat likely covalency between Cu and O atoms, and also between Mn(Ti) and O atoms.  相似文献   

5.
Using full-potential linearized augmented plane wave (FLAPW) method, we investigated the effects of intrinsic vacancies on electronic and magnetic properties in graphene-like ZnO nanosheets. The results show that the oxygen vacancy (VO) has no influence on magnetism in ZnO nanosheet, whereas the Zn vacancy (VZn) lead to spin polarization of the nanostructures with a total magnetic moment of 2.0μB due to O-2p and Zn-3d hybridization. When the distance of two VZn defects increases to 6.499 Å, the system shows an intriguing half-metallic character with 100% spin-polarized carriers due to O(2p)–Zn(3d)–O(2p) coupling chain between two VZn defects.  相似文献   

6.
The structural, electronic and elastic properties of potassium hexatitanate (K2Ti6O13) whisker were investigated using first-principles calculations. The calculated cell parameters of K2Ti6O13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (−61.1535 eV/atom) and cohesive energy (−137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K2Ti6O13 crystal, the TiO bonding interactions are stronger than that of KO, while no apparent KTi bonding interactions can be observed. The structural stability of K2Ti6O13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K2Ti6O13 is a high stiffness and brittle material with small anisotropy in shear and compression.  相似文献   

7.
The electronic structure and ferromagnetic stability of Co-doped SnO2 are studied using the first-principle density functional method within the generalized gradient approximation (GGA) and GGA+U schemes. The addition of effective UCo transforms the ground state of Co-doped SnO2 to insulating from half-metallic and the coupling between the nearest neighbor Co spins to weak antimagnetic from strong ferromagnetic. GGA+UCo calculations show that the pure substitutional Co defects in SnO2 cannot induce the ferromagnetism. Oxygen vacancies tend to locate near Co atoms. Their presence increases the magnetic moment of Co and induces the ferromagnetic coupling between two Co spins with large Co-Co distance. The calculated density of state and spin density distribution calculated by GGA+UCo show that the long-range ferromagnetic coupling between two Co spins is mediated by spin-split impurity band induced by oxygen vacancies. More charge transfer from impurity to Co-3d states and larger spin split of Co-3d and impurity states induced by the addition of UCo enhance the ferromagnetic stability of the system with oxygen vacancies. By applying a Coulomb UO on O 2 s orbital, the band gap is corrected for all calculations and the conclusions derived from GGA+UCo calculations are not changed by the correction of band gap.  相似文献   

8.
D.P. Rai 《Phase Transitions》2013,86(7):608-618
We performed the structure optimization followed by the calculation of electronic structure and magnetic properties on Co2MnGe and Co2MnSn. The structure optimization was based on generalized gradient approximation exchange correlation and full potential linearized augmented plane wave (FP-LAPW) method. The calculation of electronic structure was based on FP-LAPW method using local spin density approximation. We have studied the electronic structure and magnetic properties. The calculated density of states and band structures shows the half-metallic ferromagnets character of Co2MnGe and Co2MnSn.  相似文献   

9.
The half-metallic state in the Heusler alloys Co2MSn (M = Ti, Zr, Hf) was studied by means of first principles calculation, using both, the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA) to the exchange-correlation energy. While the GGA calculation shows that the three alloys are half-metallic ferromagnets, the LSDA results show that they are ferromagnetic but not half-metallic systems. The difference between the exchange-correlation functionals is analyzed through the electronic structure of the alloys. The origin of the gap in the minority spin channel for GGA calculations is discussed.  相似文献   

10.
《Current Applied Physics》2015,15(7):839-843
We present results on the transport properties of the half-metallic ferromagnetic Heusler alloys Co2CrAl and Co2CrGa in the temperature range from 4 to 900 K. The peculiarities of the resistivity and the absolute differential thermoelectric power are considered within a two-current model of conductivity, taking into account the energy gap at the Fermi level in the electronic spectrum of alloys for electrons with spin opposite to the direction of the magnetization vector.  相似文献   

11.
The structural, electronic and magnetic properties of Co-based Heusler compounds Co2YZ (Y = V, Cr; Z = Al, Ga) under pressure are studied using first principles density functional theory. The calculations are performed within generalized gradient approximation. The total magnetic moment decreases slightly on compression. Under application of external pressure, the valence band and conduction band are shifted downward which leads to the modification of electronic structure. There exists an indirect band gap along ГX for all the alloys studied. Co2CrAl shows half-metallic nature up to 85 GPa. After this pressure transition from true half-metallic behavior to nearly half-metallic behavior is observed and at 90 GPa it shows metallic behavior. Co2CrGa shows nearly half-metallic behavior at ambient pressure, but true half-metallic behavior is observed as pressure is increased to 100 GPa. For Co2VGa, true half-metallic to nearly half-metallic transition is observed at 40 GPa and around 100 GPa, Co2VGa shows metallic behavior. For Co2VAl, true half-metallic behavior is not observed at ambient as well as higher pressures. The half metal-to-metal transition in Co2VAl and Co2CrAl is accompanied by quenching of magnetic moment.  相似文献   

12.
CoxTi1−xO2−δ films have been prepared on Si(001) substrates by sol-gel method. When heat treated in air, CoxTi1−xO2−δ films are non-ferromagnetic at room temperature. However, after further vacuum annealing or hydrogenation, CoxTi1−xO2−δ films show room-temperature ferromagnetism (RTFM). When the vacuum annealed CoxTi1−xO2−δ films are reheated in air, the magnetic moments of the films strongly reduce. After these films are vacuum annealed once again, the magnetic moments are greatly enhanced, confirming the role of vacuum annealing in ferromagnetism of CoxTi1−xO2−δ films. The x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and measurements of magnetization (M) vs temperature (T) fail to detect Co clusters in the vacuum annealed and the hydrogenated CoxTi1−xO2−δ films. Oxygen vacancies are formed in CoxTi1−xO2−δ films after vacuum annealing and hydrogenation, determined by XRD and XPS measurements. These results indicate that oxygen vacancies created by vacuum annealing and hydrogenation play an important role in the generation of RTFM in CoxTi1−xO2−δ films.  相似文献   

13.
In this study, the electronic structure and magnetic properties of novel half-metallic Ti2FeSi full-Heusler compound with CuHg2Ti-type structure were examined by density functional theory (DFT) calculations. The electronic band structures and density of states of the Ti2FeSi compound show the spin-up electrons are metallic, but the spin-down bands are semiconductor with a gap of 0.45 eV, and the spin-flip gap is of 0.43 eV. Fe atom shows only a small magnetic moment and its magnetic moment is antiparallel to that of Ti atoms, which is indicative of ferrimagnetism in Ti2FeSi compound. The Ti2FeSi Heusler compound has a magnetic moment of 2 μB at the equilibrium lattice constant a=5.997 Å.  相似文献   

14.
《Solid State Ionics》2006,177(19-25):1767-1770
The defects in Cr2−xTixO3 (x = 0, 0.2 and 0.3) were studied by a combination of X-ray diffraction, density and electrical conductivity measurements supported by atomistic simulation. The results are consistent with the Ti being dissolved as Ti4+ compensated by Cr vacancies which associate to form complex defects of lower energy. Ti doping gives n-type semiconductivity due to a small concentration of Ti3+ in equilibrium with the complexes.  相似文献   

15.
First-principles calculations have been performed on the electronic structures and magnetic properties of a new Ti2Co-based full-Heusler alloy Ti2CoGe. The calculations predict the Ti2CoGe is a half-metallic ferromagnet at the equilibrium lattice constant with the minority-spin energy gap of 0.60 eV. It is found that the total magnetic moment (Mt) and the number of valence electrons (Zt) in Ti2CoGe obey a new Slater–Pauling (SP) rule of Mt=Zt−18 and the rule also can be applied to other Ti2Co-based half-metallic full-Heusler alloys. The Ti2CoGe alloy keeps a 100% polarization at Fermi level and maintains the half-metallic character for lattice constants ranging between 6.05 and 6.67 Å.  相似文献   

16.
X. Sun  M. Kurahashi  A. Pratt  Y. Yamauchi 《Surface science》2011,605(11-12):1067-1073
The adsorption of atomic hydrogen on an Fe3O4(100) surface is investigated using first-principles calculations. Our calculations reveal that hydrogen atoms prefer bonding with surface oxygen atoms not with tetrahedral iron atoms. The hydrogen-adsorbed Fe3O4(100) surface can be represented by a (1 × 1) unit cell, which is consistent with our recent experimental result. The spin-up surface-state bands are found to be shifted toward the deep level due to hydrogen adsorption. As a result, a band gap appears in the spin-up electronic states and half-metal behavior occurs at the H/Fe3O4(100) surface. The transition from a metallic to half-metallic surface due to hydrogen adsorption is discussed through analysis of the calculated spin-resolved band structure and differential charge density distribution. The reason for the enhancement of the spin polarization is attributed to a donation-redistribution process by O―H bond formation but not to detailed atomic structures of Fe and O atoms such like Jahn–Teller distortion.  相似文献   

17.
Powders of spinel Li4Ti5O12 (LTO) were successfully synthesized at reducing conditions by solid-state method. The structure and physical properties of Li4Ti5O12 were examined by X-ray diffraction (XRD), Raman spectroscopy, scanning electronic microscopy (SEM), and differential capacitance, respectively. XRD shows that both samples are single-phase spinel compounds. LTO synthesized in Ar/H2(8% mol) has a larger lattice parameter than that in Ar. SEM indicates that all of the prepared powders have the uniform, nearly cubic structure morphology with narrow size distribution in the range of 200–300 nm. Raman spectra indicate that the Raman bands corresponding to the Ti–O vibration has a blue shift from 674 to 680 cm−1 due to the few H2 in the synthesized condition, indicating that there is very few oxygen vacancies in the Li4Ti5O12 synthesized under Ar/H2 (8% mol). The dQ/dV vs. voltage plots reveals the redox potentials for the synthesized Li4Ti5O12-negative electrode materials.  相似文献   

18.
We have studied the electronic structure, magnetic and transport properties of some Co based full Heusler alloys, namely Co2TiZ (Z=Si, Ge and Sn), in the frame work of first-principle calculations. The calculations show that Co2TiZ (X=Si, Ge and Sn) are to be half-metallic compounds with a magnetic moment of 2 μB, well consistent with the Slater-Pauling rule. The electronic structure results reveal that Co2TiZ has the high density of states at the Fermi energy in the majority-spin state and show 100% spin polarization. Our results also suggest that both the electronic and magnetic properties in these compounds are intrinsically related to the appearance of the minority-spin gap. The origin of energy gap in the minority-spin states is discussed in terms of the electron splitting of Z (Z=Si, Ge and Sn) and 3d Co atoms and also the d-d hybridization between the Co and Ti atoms. The transport properties of these materials are discussed on the basis of Seebeck coefficients, electrical conductivity coefficients and thermal conductivity coefficients.  相似文献   

19.
Ab initio density functional calculations (plane wave GGA, CASTEP) were performed to determine the effect of O deficiency on the electronic structure of rutile, TiO2. O deficiency was introduced through either the removal of O or the insertion of interstitial Ti atoms. At physically realistic concentrations of O vacancies in the rutile lattice (i.e. 25% and less) O deficiency results in the population of the bottom of the conduction band, the location of the Ti 3d orbitals in the pure structure, increasingly with increasing vacancy concentration. We propose that this could be confused with the formation and population of gap states especially where O vacancies occur in isolated positions in the lattice. In contrast, Ti interstitials introduce a defect state into the energy gap, without an overall reduction in the size of the energy gap. O vacancies result in a spin polarized solution, whereas Ti interstitials do not.  相似文献   

20.
Mossbauer emission studies of Fe, In, and Ti doped 57Co1?xO have been earned out The appearance of the anomalous ferrice line is due to the existence of cationic vacancies and impurity acceptor levels An electron recombination model is proposed which takes into account the electronic character of the impurity defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号