首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
离子液体功能化二氧化硅催化Knoevenagel反应   总被引:5,自引:0,他引:5  
在100 ℃, 无外加溶剂条件下, 离子液体功能化二氧化硅催化一系列芳醛和活泼亚甲基化合物进行Knoevenagel 缩合反应, 以高产率生成相应产物. 当反应底物为水杨醛与氰基乙酸乙酯的时候, 产物为3-乙氧基羰基香豆素, 这是水杨醛和氰基乙酸乙酯缩合关环, 再发生氰基醇解的产物. 采用离子液体功能化二氧化硅作为反应催化剂, 反应后催化剂可回收再利用.  相似文献   

2.
In this work, Al2O3 was mixed with SiO2 and poly 4-vinylpyridine by the sol-gel method in order to make a composite which is used as a heterogeneous basic catalyst for Knoevenagel condensation reaction. The physical and chemical properties of the composite catalyst were investigated by XRD, FT-IR, TG, BET and SEM techniques. The catalytic performance of each material was determined for the Knoevenagel condensation reaction between carbonyl compound and malononitrile. The reactions were performed in solvent-free conditions and the product was obtained in high yield and purity after a simple work-up. The effects of the amount of catalyst, amount of monomer for the synthesis of composite and recyclability of the heterogeneous composite were investigated. The composite catalyst used for this synthetically useful transformation showed considerable level of reusability besides very good activity.  相似文献   

3.
MgC2O4/SiO2 catalyzes the efficient Knoevenagel condensation of aldehydes with active methylene compounds in solvent-free conditions under microwave irradiation to give alkenes derivatives in excellent yields. MgC2O4/SiO2 can be reusable for Knoevenagel condensation. However, ketones have been found to be unsatisfactory in the reaction under the same conditions.  相似文献   

4.
Fe3O4 magnetic nanoparticles (MNPs) were obtained using a reduction–precipitation method. These MNPs were modified with cysteamine hydrochloride. This catalyst was characterized using a number of physicochemical measurements. The Fe3O4–cysteamine MNPs, as an efficient and heterogeneous catalyst, were successfully used for Knoevenagel condensation under mild conditions. The activity of this nanomagnetic catalyst in the Knoevenagel condensation of aromatic aldehydes and malononitrile is described. Easy preparation of the catalyst, easy work‐up procedure, excellent yields and short reaction times are some of the advantages.  相似文献   

5.
The synthesis of Faujasite‐type zeolites with high purity has been successfully performed from Tunisian kaolinite and the effects of different crystallization parameters on the final products were widely investigated. The alkaline fusion of kaolinite followed by hydrothermal treatment lead to zeolite NaX synthesis whereas the classic hydrothermal transformation of metakaolinite produces NaY zeolite. The results show that an increase in the synthesis temperature and time has improved the crystallization process of the zeolite NaX whereas the SiO2/Al2O3 and the Na2O/SiO2 molar ratios were the key parameters to obtain a pure zeolite NaY. The highest specific surface areas obtained with the optimal crystallization conditions were 554 m2 g?1 and 592 m2 g?1 for respectively NaX and NaY zeolites. The basic properties of NaX and NaY zeolites were explored in the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate at 140 °C as a test reaction in the absence of solvent. The influence of ion exchange with cesium cation on the catalytic activity of prepared catalysts was also investigated. It was found that the NaX provided higher activity than that of NaY catalyst due to its lower Si/Al ratio whereas a cesium exchange conferred higher basicity to the prepared Na‐faujasite.  相似文献   

6.
Tribenzylammonium tribromide supported onto magnetic nanoparticles (Br3‐TBA‐Fe3O4) as a bromine source was successfully synthesized and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and vibrating sample magnetometry. The synthesized catalyst is shown to be a versatile and highly efficient heterogeneous catalyst for the Knoevenagel condensation and synthesis of 2,3‐dihydroquinazolin‐4(1H )‐one and polyhydroquinoline derivatives. To the best of the authors' knowledge, this is the first report of the use of a bromine source immobilized on Fe3O4 nanoparticles as a magnetically separable catalyst for these reactions. The nanosolid catalyst can be magnetically recovered and reused readily several times without significant loss in catalytic efficiency.  相似文献   

7.
Polyvinyl amine coated Fe3O4@SiO2 composite microspheres with a core-shell structure were prepared and employed as a magnetic catalyst for Knoevenagel condensation under mild conditions. The catalyst can be readily recovered using a magnet and reused several times without loss in activity or selectivity. The performance of the magnetic base catalyst was compared with that of polyvinyl amine functionalized mesoporous SBA-15, which showed that the magnetic nanoparticles gave improved reaction rate and yield.  相似文献   

8.
The magnetic biocompatible rod-like ZnS/CuFe2O4/agar organometallic hybrid catalyst was designed and prepared based on a natural macromolecule (agar) through a green and convenient method using inexpensive, nontoxic, and easily available substances. Then, the as-prepared catalyst was characterized by several techniques such as Fourier transform-infrared spectroscopy, energy-dispersive X-ray analysis, scanning electron microscopy image, transmission electron microscopy, vibrating sample magnetometry curve, X-ray diffraction pattern, and thermogravimetric analysis. Eventually, the catalytic application of the ZnS/CuFe2O4/agar nanobiocomposite was assessed in sequential Knoevenagel condensation–Michael addition reaction of dimedone, malononitrile, and different substituted aromatic aldehydes for the synthesis of 2-amino-tetrahydro-4H-chromene-3-carbonitrile derivatives. Some notable strengths of this environmentally benign catalyst include simplicity of catalyst preparation and separation, affording desired products with satisfactory yields (81%–97%) in very short reaction times (3–18 min), and with no need for complicated work-up processes. Experimental tests showed that the catalyst can be successfully reused after five sequential runs without significant reduction in its catalytic efficiency.  相似文献   

9.
Sulfamic acid immobilized on diethylenetriamine functionalized Fe3O4 nanoparticles (SA‐DETA‐Fe3O4) was successfully prepared and characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), vibrating sample magnetometer (VSM), thermo gravimetric analysis (TGA), X‐Ray diffraction (XRD) and scanning electron microscopy (SEM). The sulfamic acid was found as a magnetically separable and highly active catalyst for the oxidative coupling thiols, oxidation of sulfides. Furthermore, the SA‐DETA‐Fe3O4 showed the high catalytic activity in Knoevenagel condensation of aromatic aldehydes with active methylene compounds (malononitrile and ethyl cynoacetate). The nanosolid catalyst could be easily recovered by a simple magnetic separation and reused for many cycles without deterioration in catalytic activity.  相似文献   

10.
《合成通讯》2013,43(24):4521-4529
Abstract

The Knoevenagel condensation of aromatic aldehydes with (2‐thio)barbituric acid proceeded efficiently in reusable ionic liquids, EAN, BmimBF4, and BmimPF6 at room temperature in the absence of any catalyst with high yields.  相似文献   

11.
A framework connected phosphate material K2Ce(PO4)2, explored for the first time for the Knoevenagel condensation of aldehydes with malononitrile in water. The catalyst was prepared by newly developed solid-state method and characterized using XRD, RAMAN, FTIR, BET surface area, TPD, XPS, SEM and HRTEM. The developed protocol showed the substrate compatibility along with the catalyst reusability. Moreover, the catalyst was scaled up to 30 g and also showed reusability. The role of predominant Ce(IV) species was also discussed apart from phosphate basic sites.  相似文献   

12.
We are reporting a simple, efficient and green protocol for the synthesis of chromenes and dihydropyrimidines (products of Knoevenagel and Biginelli reaction, respectively) by the use of silica-supported perchloric acid (HClO4–SiO2) as an effective heterogeneous catalyst. Short reaction times, high product yields, simple procedure and reusability of the catalyst are the superior characteristics of this protocol.  相似文献   

13.
A type of multifunctional periodic mesoporous organosilica supported dual imidazolium ionic liquids PMO-IL-anion have been designed and prepared, characterized and evaluated as heterogeneous catalysts for the Knoevenagel condensation. The as-fabricated supported ionic liquids show good catalytic performances in the Knoevenagel condensation at room temperature, especially the supported ionic liquids PMO-IL-NTf2 and PMO-IL-PF6, based on a synergetic effect between the Lewis-base-type sites of dual functionalized imidazolium ionic liquids and active sites of periodic mesoporous organosilica. The best catalytic performance over PMO-IL-NTf2 was observed with excellent yields of 93~99% in a short time of 20~30 min. In addition, the heterogeneous catalyst offers simple operation for recovery and the recycling test showed that it could be reused for five times without significant loss of catalytic activity, thus making this process economical and environmental-friendly.  相似文献   

14.
In this paper, guanidine groups (Gn) supported on modified magnetic nanoparticles (Fe3O4–4,4′‐MDI) were synthesized for the first time. The catalyst synthesized was characterized by various techniques such as SEM (Scanning Electron Microscopy), TEM (Transmission electron microscopy), XRD ( X‐ray Diffraction ), TGA (Thermogravimetric ananlysis), EDS ( Energy‐dispersive X‐ray spectroscopy ) and VSM (vibrating sample magnetometer). The catalyst activity of modified MNPs–MDI‐Gn, as powerful basic nanocatalyst, was probed through the Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation reactions. Conversion was high under optimal conditions, and reaction time was remarkably shortened. This nanocatalyst could simply be separated and recovered from the reaction mixture by simple magnetic decantation and reused many times without significant loss of its catalytic activity. Also, the nanocatalyst could be recycled for at least seven (Knoevenagel condensation) and six (Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation) additional cycles after they were separated by magnetic decantation and, washed with ethanol, air‐dried, and immediately reused.  相似文献   

15.
Tosic acid on silica gel (TsOH-SiO2) was synthesized and characterized using microscopic and spectroscopic techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Thermal behaviour of the catalyst was investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. TsOH-SiO2 showed excellent catalytic activity for the Knoevenagel condensation and was recyclable for six cycles.  相似文献   

16.
Knoevenagel condensation proceeds efficiently in recyclable [bmim]PF6 and [bmim]BF4 without any catalyst, and hydrotalcites in ionic liquid serve as a safe and recyclable reaction system for both Knoevenagel as well as nitroaldol condensations.  相似文献   

17.
Kunal M. Gokhale 《合成通讯》2020,50(9):1396-1403
Abstract

In this paper, we report one-pot, three-component cyclo condensation of an aldehyde, an amine and thioglycolic acid to form 2,3-disubstituted-thiazolidin-4-one by using supported protic acid (Silica Chloride: SiO2-Cl) catalyst. The catalyst SiO2-Cl is compatible with a variety of aldehydes (aryl/heteroaryl) and the aromatic amines affording 2,3-disubstituted-thiazolidin-4-one analogs in 72–89% yields. Moreover, the supported catalyst was recycled several times without significant loss of catalytical activity  相似文献   

18.
Phosphomolybdic acid (PMA)–SiO2 was found to be an efficient catalyst for the three‐component condensation reaction of phthalhydrazide, 1,3‐diketone, and aldehydes to produce 2H‐indazolo[1,2‐b]phthalazine‐triones in excellent yields. The catalyst can be recovered and reused without significant loss of activity.  相似文献   

19.
2,7-Diaryl-3-cyano-4-methylpyrano[4,3-b]pyridin-5-ones were synthesized by Ni(acac)2-catalyzed condensation of aroylacetonitriles with acetoacetates. The competitive Knoevenagel reaction gave 6-aryl-5-cyano-4-methylpyran-2-ones as by-products. A preparative method for the synthesis of the latter compounds in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst was proposed.  相似文献   

20.
A facile and simple strategy to prepare ammonia gas-modified graphene oxide (GO) catalysts was successfully established by gas–solid acid–base reaction at room temperature. The catalytic performances of ammonia gas-modified GO samples were examined in Knoevenagel condensation. The samples were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, X-ray photoelectron spectroscopy, atomic force microscope, NH3 temperature-programmed desorption and elemental analysis. The results indicated that the excellent performances of the ammonia gas-modified GO samples in Knoevenagel condensation should be ascribed to the formation of ammonium ions (NH4 +) by the reaction between ammonia gas and the carboxyl groups located on the edge of the GO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号