首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Chimie》2016,19(5):614-629
The treatment of [PdL3(NH3)](OTf)n (n = 1; L3 = (PEt3)2(Ph), (2,6-(Cy2PCH2)2C6H3), n = 2; L3 = (dppe)(NH3)) with NaNH2 in tetrahydrofuran at ambient temperature or −78 °C afforded the dimeric and monomeric parent-amido palladium(II) complexes anti-[Pd(PEt3)(Ph)(μ-NH2)]2 (1), [Pd(dppe)(μ-NH2)]2(OTf)2 (2), and Pd(2,6-(Cy2PCH2)2C6H3)(NH2) (3), respectively. The molecular structures of the amido-bridged (μ-NH2) dimeric complexes 1 and 2 were determined by single-crystal X-ray crystallography. The monomeric amido complex 3 reacted with trace amounts of water to give a hydroxo complex, Pd(2,6-(Cy2PCH2)2C6H3)(OH) (4). Exposing complex 3 to an excess of water resulted in the complete conversion of the complex into two species [Pd(2,6-(Cy2PCH2)2C6H3)(OH2)]+ and [Pd(2,6-(Cy2PCH2)2C6H3)(NH3)]+. Complex 3 reacted with diphenyliodonium triflate ([Ph2I]OTf) to give the aniline complex [Pd(2,6-(Cy2PCH2)2C6H3)(NH2Ph)]OTf. The reaction of 3 with phenylacetylene (HCCPh) yielded a palladium(II) acetylenide Pd(2,6-(Cy2PCH2)2C6H3)(CCPh) (5), quantitatively, along with the liberation of ammonia. The reaction of 3 with dialkyl acetylenedicarboxylate yielded diastereospecific palladium(II) vinyl derivatives (Z)-Pd(2,6-(Cy2PCH2)2C6H3)(CRCR(NH2)) (R = CO2Me (6a), CO2Et (6b)). The reaction of complexes 6a and 6b with p-nitrophenol produced Pd(2,6-(Cy2PCH2)2C6H3)(OC6H4-p-NO2) (7) and cis-CHRCR(NH2), exclusively. Reactions of 3 with either dialkyl maleate (cis-(CO2R)CHCH(CO2R)) (R = CH3, CH2CH3) or cis-stilbene (cis-CHPhCHPh) did not result in any addition product. Instead, isomerization of the cis-isomers to the trans-isomers occurred in the presence of catalytic amounts of 3. Complex 3 reacted with a stoichiometric amount of acrylonitrile (CH2CHCN) to generate a metastable insertion product, Pd(2,6-(Cy2PCH2)2C6H3)(CH(CN)CH2NH2). On the other hand, the reaction of 3 with an excess of acrylonitrile slowly produced polymeric species of acrylonitrile. The catalytic hydroamination of olefins with NH3 was examined in the presence of Pd(2,6-(Cy2PCH2)2C6H3)(OTf), producing a range of hydroaminated products of primary, secondary, and tertiary amines with different molar ratios of more than 99% overall yield. A mechanistic feature for the observed catalytic hydroamination is described with regard to the aminated derivatives of palladium(II).  相似文献   

2.
Reaction of Mo(N-2,6-i-Pr2-C6H3)(CHCMe2C6H5)(OSO2CF3)(DME) (DME = 1,2-dimethoxyethane) with 2 equiv. of CF3COOK yields μ-(CF3COO)2-[Mo(N-2,6-i-Pr2-C6H3)(CHCMe2Ph)(OOCCF3)(Et2O)]2 (1). Compound 1 crystallizes in the orthorhombic space group Pna21 with a = 17.2485(3), b = 17.0336(3), c = 25.4031(5) Å, α = β = γ = 90°, V = 7463.5(2) Å3, Z = 4. In contrast to alkoxide based Schrock type initiators, 1 is virtually inactive in numerous metathesis reactions including ring-closing metathesis (RCM) and homo metathesis reactions, the cyclopolymerization of 1,6-heptadiynes, and even ring-opening metathesis polymerization (ROMP) of norborn-2-ene. However, addition of quinuclidine results in the in situ formation of 1a (Mo(N-2,6-i-Pr2-C6H3)(CHCMe2C6H5)(OOCCF3)2(quinuclidine) which displays moderate activity in ROMP, cyclopolymerization of 1,6-heptadiynes and RCM. Theoretical investigations carried out on the B3LYP/LACVP1 level provide substantial explanation for these findings.  相似文献   

3.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

4.
Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H2SBn) and their Fe (III) heterochelates of the type [Fe(SBn)(L)(H2O)]·mH2O [H2SBn = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = –CH3, m = 4 (H2SB1); –C6H5, m = 2 (H2SB2); –CH2–CH3, m = 3 (H2SB3); –CH2–CH2–CH3, m = 1.5 (H2SB4); –CH2–C6H5, m = 1.5 (H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been reported.  相似文献   

5.
A novel zinc diphosphonate, Zn[HO3PCH2(C6H4)CH2PO3H] (1) was synthesized from tetraethyl para-xylylenediphosphonate, Et2O3PCH2C6H4CH2PO3Et2, and Zn (AcO)2·2H2O under solvothermal conditions. The structure of compound 1 was determined by single-crystal X-ray diffraction, which reveals that the structure crystallizes in the monoclinic space group C2/c (No. 15), with a = 22.4844(19) Å, b = 6.4361(5) Å, c = 8.1194(7) Å, β = 102.595(2)°, V = 1146.70(16) Å3, T = 298(2) K, Z = 8. The novel three-dimensional (3D) construction is simply built up from linear inorganic chains of corner-sharing four-rings of tetrahedral [ZnO4] and [PO3C] which connected adjacent chains by the organophosphorus ligand para-xylylenediphosphonate. The framework has 10 Å × 4 Å (containing the van der Waals radii of atoms) channels running along the b-axis.  相似文献   

6.
《Polyhedron》2005,24(3):397-406
Four 4,4′-bipyridine α,ω-dicarboxylate coordination polymers Cu(bpy)(C5H6O4) (1), Zn(bpy)(C5H6O4) (2), Zn(bpy)(C6H8O4) (3) and Mn(bpy)(C8H12O4) · H2O (4) have been synthesized and structurally characterized by single crystal X-ray diffraction methods (bpy = 4,4-bipyridine, (C5H6O4)2− = glutarate anion, (C6H8O4)2− = adipate anion, (C8H12O4)2− = suberate anion). Their crystal structures are featured by dimeric metal units, which are co-bridged by 4,4′-bipyridine ligands and dicarboxylate anions such as glutarate, adipate and suberate anions to generate 2D layers with a (4,4) topology in 1, 2 and 4 as well as to form 3D frameworks in 3. Two 3D frameworks in 3 interpenetrate with each other to form a topology identical to the well-known Nb6F15 cluster compound. Over 5–300 K, the paramagnetic behavior of 4 follows the Curie–Weiss law χm(T  Θ) = 4.265(5) cm3 mol−1 with the Weiss constant Θ = −6.3(2) K. Furthermore, the thermal behavior of 3 and 4 is also discussed.  相似文献   

7.
《Comptes Rendus Chimie》2007,10(7):666-676
The ligand (i-Pr)2PCH2(oxazoline) (1a), of the P,N-donor type, was reacted with [PdMeCl(COD)] to yield the square planar methylpalladium(II) complex [PdClMe(P,N)] (P,N = 1a) (2a), from which the complex [PdMe(P,N)OTf] (OTf = OSO2CF3) (3a) was obtained by AgOTf-promoted chloride abstraction. The alkyl complexes
(P,N = 1a) (5a, R = H; 7a, R = C(O)OMe) have been isolated from the initial CO/ethylene or CO/methyl acrylate insertion steps into the Pd–Me bond of 3a, respectively, and spectroscopically characterized. Complexes 2a, 3a and 7a have been fully characterized by single crystal X-ray diffraction. Complex 7a is still a rare example of a structurally characterized CO/methyl acrylate stepwise insertion product. These complexes are relevant to the alternating copolymerization of olefins and carbon monoxide catalyzed by palladium complexes. In addition, the centrosymmetric dinuclear complex trans-[Pd(μ-Cl){(i-Pr)2PCH2(oxazoline)}]2(OTf)2 (6) has been obtained and characterized by X-ray diffraction; it appears to be the first dinuclear complex of the type [Pd(μ-Cl)(P,N)]2 to be characterized by X-ray crystallography.

Résumé

Le ligand (i-Pr)2PCH2(oxazoline) (1a), de type donneur P,N, réagit avec [PdClMe(COD)] pour former le complexe plan carré méthylpalladium(II) [PdClMe(P,N)] (P,N = 1a) (2a), à partir duquel le complexe [PdMe(P,N)OTf] (OTf = OSO2CF3) (3a) a été obtenu par abstraction de chlorure à l'aide de AgOTf. Les complexes alkyles
(P,N = 1a) (5a, R = H; 7a, R = C(O)OMe), ont été isolés lors des premières étapes d'insertion de CO/éthylène ou de CO/acrylate de méthyle, respectivement, dans la liaison Pd–Me de 3a, et caractérisés par méthodes spectroscopiques. Les complexes 2a, 3a et 7a ont été complètement caractérisés par diffraction des rayons X sur monocristal. Le complexe 7a est un exemple encore rare de produit d'insertion par étapes de CO/acrylate de méthyle qui ait été caractérisé structuralement. Ces complexes sont pertinents pour la copolymérisation alternée d'oléfines et de monoxyde de carbone catalysée par les complexes du palladium. En outre, le complexe dinucléaire centrosymétrique trans-[Pd(μ-Cl){(i-Pr)2PCH2(oxazoline)}]2(OTf)2 (6) a été obtenu et caractérisé par diffraction des rayons X; il s'agit du premier complexe dinucléaire de type [Pd(μ-Cl)(P,N)]2 à être caractérisé par diffraction des rayons X.  相似文献   

8.
Alkyl and arylplatinum complexes with 1,5-cyclooctadiene ligand, [PtR2(cod)] (R = Me, Ph, C6H4-p-CF3, C6F5), react with secondary phosphines, PHR′2 (R′ = i-Bu, t-Bu, Ph), to afford the mononuclear platinum complexes, cis-[PtR2(PHR′2)2] (1a: R = Me, R′ = i-Bu; 1b: R = Me, R′ = t-Bu; 1c: R = Me, R′ = Ph; 2a: R = Ph, R′ = i-Bu; 2b: R = Ph, R′ = t-Bu; 2c: R = R′ = Ph; 3a: R = C6H4-p-CF3, R′ = i-Bu; 3b: R = C6H4-p-CF3, R′ = t-Bu; 3c: R = C6H4-p-CF3, R′ = Ph; 4a: R = C6F5, R′ = i-Bu; 4c: R = C6F5, R′ = Ph) in 81–98% yields. Molecular structures of the complexes except for 1a, 1c and 2a were determined by X-ray crystallography. Complex 1b has a square-planar structure with Pt–C(methyl) bonds of 2.083(8) and 2.109(8) Å, while the Pt–C(aryl) bonds of 2bc, 3ac, 4a and 4c (2.055(1)–2.073(8) Å) are shorter than them. Thermal decomposition of 1b, 2ac, and 3ac releases methane, biphenyl or 4,4′-bis(trifluoromethyl)biphenyl as the organic products, which are characterized by NMR spectroscopy. The solid product of the thermal reactions of 2b and 2c were characterized as the metallopolymers formulated as [Pt(PR′2)2]n (5b: R′ = tBu; 5c: R′ = Ph), based on the solid-state NMR and elemental analyses.  相似文献   

9.
The synthesis of new ruthenium-based catalysts applicable for both homogeneous and heterogeneous metathesis is described. Starting from the Hoveyda-Grubbs first generation (1) and the Hoveyda-Grubbs second generation (2) catalysts the homogeneous catalysts [RuCl((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(SIMes)] (4: R = Et, R′ = H; 5: R = R′ = Me) (SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) were prepared by substitution of one chloride ligand with trialkoxysilyl functionalized silver carboxylates (RO)3Si–C3H6–N(R′)–CO–C3F6–COOAg (3a: R = Et, R′ = H; 3b: R = R′ = Me). These homogeneous ruthenium-species are among a few known examples with mixed anionic ligands. Exchange of both chloride ligands afforded the catalysts [Ru((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(SIMes)] (9: R = Et, R′ = H; 11: R = R′ = Me) and [Ru((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(PCy3)] (8: R = Et, R′ = H; 10: R = R′ = Me). The reactivity of the new complexes was tested in homogeneous ring-closing metathesis (RCM) of N,N-diallyl-p-toluenesulfonamide and TONs of up to 5000 were achieved. Heterogeneous catalysts were obtained by reaction of 4, 5 and 811 with silica gel (SG-60). The resultant supported catalysts 4a, 5a, 8a11a showed reduced activity compared to their homogenous analogues, but rival the activity of similar heterogeneous systems.  相似文献   

10.
Palladium–biscarbene complexes derived from N,N′-bis(1,2,4-triazol-1-yl)methane, which bear an alkyl chain functionalized with a hydroxyl group, have been synthesized ([Pd(L1)Br2] (6) and [Pd(L1)I2] (7) [L1 = 1,1′-(3-hydroxypropylidene)bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)]). Each product is obtained as a non-equimolecular mixture of two conformers. The hydroxyl group has been replaced by bromide and methanesulphonate and ( [Pd(L2)Br2] [L2 = 1,1′-(3-bromopropylidene)bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)] (9)) and ([Pd(L3)Br2] [L3 = 1,1′-(3-methanesulphonyloxypropylidene)-bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)] (10)) were obtained, respectively, as mixtures of conformers. All compounds consist of a six-membered metallacyclic structure in a boat conformation. Major conformers present the functionalized chain in the axial position, while in minor conformers it is located in the equatorial position.  相似文献   

11.
The heterometallic cluster complexes {(p-Cymene)Ru[S2C2(B10H10)]}Mo(CO)2{(CO)3Ru[S2C2(B10H10)]} (2) and {(p-Cymene)Ru[Se2C2(B10H10)]}2Mo(CO)2 (3) (p-Cymene = η6-4-isopropyl-toluene) have been synthesized from the reactions of 16-electron half-sandwich ruthenium 1,2-dichalcogenolate carborane complexes (p-Cymene)Ru[E2C2(B10H10)] (E = S(1a), Se(1b)) with Mo(CO)3(Py)3 in the presence of BF3 · Et2O. The complexes of 2 and 3 were characterized by elemental analysis and IR, NMR spectra. The molecular structure of 2 has been characterized by single-crystal X-ray diffraction analysis. Complex 2 is unsymmetrical and the two Ru–Mo single bonds (2.7893(14), 2.8189(13) Å) are each supported by a symmetrically bridging o-carborane-1,2-dithiolato ligand.  相似文献   

12.
The reaction of organoaluminum compounds containing O,C,O or N,C,N chelating (so called pincer) ligands [2,6-(YCH2)2C6H3]AliBu2 (Y = MeO 1, tBuO 2, Me2N 3) with R3SnOH (R = Ph or Me) gives tetraorganotin complexes [2,6-(YCH2)2C6H3]SnR3 (Y = MeO, R = Ph 4, Y = MeO, R = Me 5; Y = tBuO, R = Ph 6, Y = tBuO, R = Me 7; Y = Me2N, R = Ph 8, Y = Me2N, R = Me 9) as the result of migration of O,C,O or N,C,N pincer ligands from aluminum to tin atom. Reaction of 1 and 2 with (nBu3Sn)2O proceeded in similar fashion resulting in 10 and 11 ([2,6-(YCH2)2C6H3]SnnBu3, Y = MeO 10; Y = tBuO 11) in mixture with nBu3SniBu. The reaction 1 and 3 with 2 equiv. of Ph3SiOH followed another reaction path and ([2,6-(YCH2)2C6H3]Al(OSiPh3)2, Y = MeO 12, Me2N 13) were observed as the products of alkane elimination. The organotin derivatives 411 were characterized by the help of elemental analysis, ESI-MS technique, 1H, 13C, 119Sn NMR spectroscopy and in the case 6 and 8 by single crystal X-ray diffraction (XRD). Compounds 12 and 13 were identified using elemental analysis,1H, 13C, 29Si NMR and IR spectroscopy.  相似文献   

13.
Compound Cu2(H2O)2{O3PCH2N(C2H4)2NCH2PO3} (1) has a pillared layered structure in which the organic groups of N,N′-piperazinebis(methylenephosphonate) are sandwiched between the inorganic layers. Compared with other copper phosphonates with layered or pillared layered structures, the inorganic layer in 1 is unique in that each {CPO3} tetrahedron is corner-shared with three {CuO4N} square pyramids through three oxygen donors. Ferromagnetic interactions are mediated between the metal centers. Crystal data: Pbca, a=10.0830(16) Å, b=9.4517(15) Å, c=13.218(2) Å, V=1259.7(3) Å3, Z=4.  相似文献   

14.
《Comptes Rendus Chimie》2007,10(12):1170-1179
In continuation of studies carried out previously [I. Bernal, Inorg. Chim. Acta 96 (1985) 99; I. Bernal, Inorg. Chim. Acta (1986) 121; I. Bernal, E.O. Schlemper, C.K. Fair, Inorg. Chim. Acta 115 (1986) 25; I. Bernal, Inorg. Chim. Acta 101 (1985) 175; I. Bernal, J. Cetrullo, J. Coord. Chem. 20 (1989) 237], we have now expanded the nature and number of cations associated with the [trans-(NH3)2Co(NO2)4] anion in order to better document when, and how, this helical propeller species crystallizes as a conglomerate.[(tren)Co(NO2)2][trans-(NH3)2Co(NO2)4] (I) crystallizes as a racemate in space group P21/n with cell constants of a = 15.8900(2), b = 19.7800(3), c = 26.6200(4) Å, β = 101.970(3)°, z = 15.[(tren)Co(ox)][trans-(NH3)2Co(NO2)4] (II) crystallizes as a racemate in space group I2/a with cell constants of a = 21.592(11), b = 7.050(4), c = 26.46(2) Å, β = 93.09(6)°, z = 8.[(en)2Co(ox)][trans-(NH3)2Co(NO2)4] (III) crystallizes as a racemate in space group P21/n with cell constants of a = 6.4740(1), b = 22.8950(6), c = 13.1660(3) Å, β = 97.3310(10)°, z = 4.[trans-(pn)2Co(NO2)2][trans-(NH3)2Co(NO2)4] (IV) also crystallizes as a racemate in space group P(¯1; no. 2) with cell constants of a = 6.508(2), b = 8.829(5), c = 9.851(5) Å, α = 72.84(2), β = 80.15(3), and γ = 81.45(6)°, z = 1.The most notable results are as follows: (1) all four compounds studied are racemates unlike the previously studied [cis-Co(en)2(NO2)2][trans-(NH3)2Co(NO2)4] [I. Bernal, Inorg Chim Acta 101 (1985) 175] (V) and K[trans-(NH3)2Co(NO2)4] (VI) that crystallize as conglomerates. Nevertheless, they share certain crystalline features, which are readily observed in their packing diagrams.In all the four cases the new data were collected at 295 K and 120 K, using Mo Kα radiation; the former with a Nonius CAD-4 diffractometer and the latter with a Nonius CCD instrument. Of primary interest to us are the changes in packing caused by repeated changes in the charge compensating cations. Comparisons with the packing observed previously in [cis-Co(en)2(NO2)2][trans-(NH3)2Co(NO2)4] (V) and K[trans-(NH3)2Co(NO2)4] (VI) are made since, at the time of publications of those early papers, no detailed study of the packing characteristics of these anions was published and the existing graphic software were primitive compared with the current packages. This oversight is remedied below.  相似文献   

15.
The syntheses are reported of the novel heteroleptic organostannylenes [2,6-(ROCH2)2C6H3]SnCl (1, R = Me; 2, R = t-Bu) and of their tungstenpentacarbonyl complexes [2,6-(ROCH2)2C6H3](X)SnW(CO)5 (3, X = Cl, R = Me; 4, X = Cl, R = t-Bu; 5, X = H, R = Me). The compounds were characterized by means of elemental analyses, 1H, 13C, 119Sn NMR spectroscopies, electrospray mass spectrometry and in case of 3 and 4 also by single crystal X-ray diffraction analysis. For the two latter compounds the substituents bound at the ether oxygen atom control the strength of intramolecular O  Sn coordination. Thus, the O–Sn distances amount to 2.391(5)/2.389(5) (3) and 2.464(3)/2.513(3) Å (4).  相似文献   

16.
《Solid State Sciences》2007,9(2):131-136
The new rare-earth dicarboxylate solid Eu2(H2O)4{C6H10–(CO2)2}3·2H2O or MIL-94 has been isolated under hydrothermal conditions. Its layered structure, which was solved using X-ray powder diffraction data, is built up from dimers of nine-coordinated edge-sharing polyhedra linked through 1,3-cyclohexane dicarboxylate (1,3-CHC) moieties. A comparative study of MIL-94 and the layered lanthanide dicarboxylate EuBDC or Eu2(H2O)2{C6H4–(CO2)2}3, which is built up from dimers of corner-sharing polyhedra and 1,3-benzenedicarboxylate (1,3-BDC) linkers, is also reported. Crystal data for MIL-94: orthorhombic space group Pnma (no. 62) with a = 8.8470(1) Å, b = 25.0148(1) Å, c = 14.3716(4) Å and Z = 4. MIL stands for Material Institut Lavoisier.  相似文献   

17.
Alkane elimination reaction between Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with one equivalent of the amidines with different steric demanding HL ([CyC(N-2,6-iPr2C6H3)2]H (HL1), [CyC(N-2,6-Me2C6H3)2]H (HL2), [PhC(N-2,6-Me2C6H3)2]H (HL3)) in THF afforded a series of mono(amidinate) rare earth metal bis(alkyl) complexes [CyC(N-2,6-iPr2C6H3)2]Ln(CH2SiMe3)2(THF) (Ln = Y (1), Lu (3)), [CyC(N-2,6-Me2C6H3)2]Ln(CH2SiMe3)2(THF)2 (Ln = Y (4), Lu (6)), and [PhC(N-2,6-Me2C6H3)2]Y(CH2SiMe3)2(THF)2 (7) in 75–89% isolated yields. For the early lanthanide metal Nd, THF slurry of NdCl3 was stirred with three equiv of LiCH2SiMe3 in THF, followed by addition of one equiv of the amidines HL1 or HL2 gave an “ate” complex [CyC(N-2,6-iPr2C6H3)2]Nd(CH2SiMe3)2(μ-Cl)Li(THF)3 (2) in 48% yield and a neutral [CyC(N-2,6-Me2C6H3)2]Nd(CH2SiMe3)2(THF)2 (5) in 52% yield, respectively. They were characterized by elemental analysis, FT-IR, NMR spectroscopy (except for 2 and 5 for their strong paramagnetic property). Complexes 2, 3, 4 and 5 were subjected to X-ray single crystal structure determination. These neutral mono(amidinate) rare earth metal bis(alkyl) complexes showed activity towards l-lactide polymerization to give high molecular weight and narrow molecular weight distribution polymers.  相似文献   

18.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

19.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

20.
Ali Barandov  Ulrich Abram 《Polyhedron》2009,28(6):1155-1159
Reactions of [ReOCl3(PPh3)2] with a potentially tridentate Schiff base derived from (2-formylphenyl)diphenylphosphine and 2-aminophenol, HL1P, (HL1P = Ph2PC6H4-2-HCN(C6H4-2-OH)) result in a rapid decomposition of the Schiff base and the formation of a large number of hitherto non-identified metal-containing species, while from similar reactions with the analogoue phosphine oxide HL1PO, (HL1PO = Ph2P(O)C6H4-2-HCN(C6H4-2-OH)) products of the compositions [ReOCl2(PPh3)(L1PO)] (1) and [Re(NC6H4-2-OH)Cl3(PPh3)2] (2) could be isolated. The structure of 2 is an experimental proof of the preceding, metal-induced cleavage of the C–N double bond. A subsequent reaction of the released 2-aminophenol forms the final phenylimido ligand.Reduction of HL1P with NaBH4 gives the phosphine amine H2L2P (H2L2 = Ph2P(C6H4-2-CH2NH(C6H4-2-OH))) in good yield. Reactions of H2L2P with common oxorhenium(V) complexes result in the formation of the stable rhenium(V) complex [ReOCl2(HL2P)] (3) with a facially coordinated HL2P? ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号