首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the design and characterization of a wide-field, time-domain fluorescence lifetime imaging microscopy (FLIM) system developed for picosecond time-resolved biological imaging. The system consists of a nitrogen-pumped dye laser for UV–visible–NIR excitation (337.1–960 nm), an epi-illuminated microscope with UV compatible optics, and a time-gated intensified CCD camera with an adjustable gate width (200 ps-10-3 s) for temporally resolved, single-photon detection of fluorescence decays with 9.6-bit intensity resolution and 1.4-μm spatial resolution. Intensity measurements used for fluorescence decay calculations are reproducible to within 2%, achieved by synchronizing the ICCD gate delay to the excitation laser pulse via a constant fraction optical discriminator and picosecond delay card. A self-consistent FLIM system response model is presented, allowing for fluorescence lifetimes (0.6 ns) significantly smaller than the FLIM system response (1.14 ns) to be determined to 3% of independently determined values. The FLIM system was able to discriminate fluorescence lifetime differences of at least 50 ps. The spectral tunability and large temporal dynamic range of the system are demonstrated by imaging in living human cells: UV-excited endogenous fluorescence from metabolic cofactors (lifetime ∼1.4 ns); and 460-nm excited fluorescence from an exogenous oxygen-quenched ruthenium dye (lifetime ∼400 ns). Received: 23 February 2003 / Published online: 22 May 2003 RID="*" ID="*"Corresponding author. Fax: +1-734/9361-905, E-mail: mycek@umich.edu  相似文献   

2.
Fluorescence lifetime imaging microscopy or FLIM provides a versatile tool for spatially-mapping macromolecular interactions and environments through pixel-by-pixel resolution of the excited-state lifetime. In conventional frequency-domain FLIM the phase and modulation of the detected fluorescence are determined by the photophysics of the fluorophore only. However, translational motion on the timescale of FLIM acquisition can significantly perturb apparent phase and modulation values owing to intensity fluctuations and phase decoherence. Using the phasor plot we outline a simple analytic theory, numerical simulations and measurements on fluorescent beads (ex 470 nm, em 520 nm). Fluctuations due to particle motions result in an increase in the number and spread of phasors, an effect we refer to as phasor broadening. The approach paves the way for the measurement of lifetimes and translational motion from one experiment.  相似文献   

3.
Confocal fluorescence imaging and fluorescence resonance energy transfer (FRET) technology have been widely used to study protein–protein interactions in living cells. However, it is very difficult to quantitatively analyze FRET efficiency due to the excitation spectral crosstalk and emission spectral crosstalk between donor and acceptor. In this study, we developed a novel method to quantitatively obtain the FRET efficiency by fitting the emission spectra (FES) of donor–acceptor pair, and this method is free from both excitation and emission spectral crosstalk. We used the FES method to quantitatively monitor the FRET efficiency of SCAT3, a caspase-3 indicator based on FRET, inside living cells stably expressing SCAT3 during STS-induced apoptosis. At 0, 6 and 12 h after STS treatment, the FRET efficiency of SCAT3 obtained by FES are consistent with that by two-photon excitation (TPE) fluorescence lifetime imaging microscopy (FLIM) in living cells stably expressing SCAT3. In this study, the FES was also used to analyze the caspase-3 activation in living cells during anti-cancer drug such as taxol, Artesunate (ART) or Dihydroartemisinin (DHA) treatment. Our results showed that ART or DHA induced apoptosis by a caspase-3-dependent manner, while caspase-3 was not involved in taxol-induced cell death.  相似文献   

4.
We report a wide-field fluorescence lifetime imaging (FLIM) system that uses a blue picosecond pulsed diode laser as the excitation source. This represents a significant miniaturization and simplification compared with other time-domain FLIM instruments that should accelerate the development of clinical and real-world applications of FLIM. We have demonstrated this instrument in two configurations: a macroimaging setup applied to multiwell plate assays of chemically and biologically interesting fluorophores and a microscope system that has been applied to imaging of tissue sections. The importance of the adjustable repetition rate of this laser source is discussed with respect to noise reduction and precision in the lifetime determination, illustrating a further significant advantage over conventional mode-locked solid-state lasers.  相似文献   

5.
Digitized video microscopy is rapidly finding uses in a number of fields of biological investigation because it allows quantitative assessment of physiological functions in intact cells under a variety of conditions. In this review paper, we focus on the rationale for the development and use of quantitative digitized video fluorescence microscopic techniques to monitor the molecular order and organization of lipids and phospholipids in the plasma membrane of single living cells. These include (1) fluorescence polarization imaging microscopy, used to measure plasma membrane lipid order, (2) fluorescence resonance energy transfer (FRET) imaging microscopy, used to detect and monitor phospholipid domain formation, and (3) fluorescence quenching imaging microscopy, used to spatially map fluid and rigid lipid domains. We review both the theoretical as well as practical use of these different techniques and their limits and potential for future developments, and provide as an illustrative example their application in studies of plasma membrane lipid order and topography during hypoxic injury in rat hepatocytes. Each of these methods provides complementary information; in the case of hypoxic injury, they all indicated that hypoxic injury leads to a spatially and temporally heterogeneous alteration in lipid order, topography, and fluidity of the plasma membrane. Hypoxic injury induces the formation of both fluid and rigid lipid domains; the formation of these domains is responsible for loss of the plasma membrane permeability barrier and the onset of irreversible injury (cell death). By defining the mechanisms which lead to alterations in lipid and phospholipid order and organization in the plasma membrane of hypoxic cells, potential sites of intervention to delay, prevent, or rescue cells from hypoxic injury have been identified. Finally, we briefly discuss fluorescence lifetime imaging microscopy (FLIM) and its potential application for studies monitoring local lipid and phospholipid molecular order and organization in cell membranes.  相似文献   

6.
In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS2. µ‐Raman, µ‐photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS2 films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain‐boundaries.

  相似文献   


7.
刘雄波  林丹樱  吴茜茜  严伟  罗腾  杨志刚  屈军乐 《物理学报》2018,67(17):178701-178701
由于荧光寿命不受探针浓度、激发光强度和光漂白效应等因素影响,荧光寿命显微成像技术(fluorescence lifetime imaging microscopy, FLIM)在监测微环境变化、反映分子间相互作用方面具有高特异性、高灵敏度、可定量测量等优点,近年来已被广泛应用于生物医学等领域.然而,尽管FLIM的发明和发展已历经数十年时间,其在实际应用中仍然面临着许多挑战.例如,其成像分辨率受衍射极限限制,而其成像速度与成像质量和寿命测量精度则存在相互制约的关系.近几年来,相关硬件和软件的快速发展及其与其他光学技术的结合,极大地推动了FLIM技术及其应用的新发展.本文简要介绍了基于时域和频域的不同寿命探测方法的FLIM技术的基本原理及特点,在此基础上概述了该技术的最新研究进展,包括其成像性能的提升和在生物医学应用中的研究现状,详细阐述了近几年来研究者们通过硬件和软件算法的改进以及与自适应光学、超分辨成像技术等新型光学技术的结合来提升FLIM的成像速度、寿命测量精度、成像质量和空间分辨率等方面所做的努力,以及FLIM在生物医学基础研究、疾病诊断与治疗、纳米材料的生物医学研究等方面的应用,最后对其未来发展趋势进行了展望.  相似文献   

8.
Fluorescence lifetime imaging microscopy (FLIM) is a new methodology for studying the spatial and temporal dynamics of macromolecule, molecules, and ions in living cells. In FLIM image contrast is derived from the mean fluorescence lifetime at each point in a two-dimensional image. In our case the lifetime was measured by the phase-modulation method. We describe our FLIM apparatus, which consists of a fluorescence microscope, high-speed gated proximity focused MCP image intensifier, and slow-scan CCD camera. To accomplish subnanosecond time-resolved imaging, the gain of the image intensifier is modulated with a high-frequency signal, resulting in stationary phase-sensitive intensity images on the image intensifier. These images are recorded using a cooled slow-scan CCD camera and stored in an image processor. The lifetime images are created from a series of phase-sensitive images at various phase shift of the gain-modulation signal. We demonstrate calcium concentration imaging in living COS cells based on Ca2+-induced lifetime changes of Quin-2. The phase-angle image is mapped to the Ca2+ concentration image using anin vitro-determined calibration curve. The Ca2+ concentration was found to be uniform throughout the cell. In contrast, the intensity image shows significant spatial differences, which likely reflect variations in the thickness and distribution of probe within the cell.  相似文献   

9.
As the hardware of FLIM technique becomes mature, the most important criterion for FLIM application is the correct interpretation of its data. In this research, first of all, a more orthogonal phasor approach, called as Modified Phasor Approach (MPA), is put forward. It is a way to calculate the lifetime of the complex fluorescent process, and a rule to measure how much the fluorescence process deviates from single exponential decay. Secondly, MPA is used to analysis the time-resolved fluorescence processes of the transfected CHO-K1 Cell lines expressing adenosine receptor A1R tagged by CYP and YFP, measured in the channel of the acceptor. The image of the fluorescence lifetime and the multiplication of the fluorescence lifetime and deviation from single exponential decay reveal the details of the Homo-FRET. In one word, MPA provides the physical meaning in its whole modified phasor space, and broadens the way for the application of the fluorescence lifetime imaging.  相似文献   

10.
Calcium imaging using fluorescence lifetimes and long-wavelength probes   总被引:2,自引:0,他引:2  
We describe imaging of calcium concentrations using the long-wavelength Ca2+ indicators, Calcium Green, Orange, and Crimson. The lifetimes of these probes were measured using the frequency-domain method and were found to increase from 50% to severalfold in response to calcium. The two-dimensional images of the calcium concentration were obtained using a new apparatus for fluorescence lifetime imaging (FLIM). We also describe procedures to correct for the position-dependent frequency response of the gain-modulated image intensifier used in the FLIM apparatus. Importantly, the FLIM method does not require the probe to display shifts in the excitation or emission spectra. Using the FLIM method, calcium imaging is possible using probes which display changes in lifetime in response to calcium. Consequently, calcium imaging is possible with excitation wavelengths ranging from 488 to as long as 620 nm, where autofluorescence and/or photochemical damage is minimal. These probes are also suitable for calcium measurements of single cells using lifetime-based flow cytometry.  相似文献   

11.
Fluorescence lifetime imaging microscopy (FLIM) based on time-correlated single photon counting (TCSPC) is a widely used method for fluorescence resonance energy transfer (FRET). Here we report a feasible add-on approach to upgrade a commercial two-photon FLIM microscope into a single-photon FLIM microscope which provides optimal FLIM-FRET imaging of FRET pairs consisting of cyan fluorescent proteins (CFPs) as the donor and yellow fluorescent proteins (YFPs) as the acceptor. The capability of the upgraded system is evaluated and discussed, and the imaging performance of the system is demonstrated using FLIM-FRET experiments with a representative CFP-YFP FRET pair (mCerulean-mCitrine).  相似文献   

12.
We present applications of polar plots for analyzing fluorescence lifetime data acquired in the frequency domain. This graphical, analytical method is especially useful for rapid FLIM measurements. The usual method for sorting out and determining the underlying lifetime components from a complex fluorescence signal is to carry out the measurement at multiple frequencies. When it is not possible to measure at more than one frequency, such as rapid lifetime imaging, specific features of the polar plot analysis yield valuable information, and provide a diagnostic visualization of the participating fluorescent species underlying a complex lifetime distributions. Data are presented where this polar plot presentation is useful to derive valuable, unique information about the underlying component distributions. We also discuss artifacts of photolysis and how this method can also be applied to samples where each fluorescence species shows a continuous distribution of lifetimes. Polar plots of frequency-domain data are commonly used for analysis of dielectric relaxation experiments (Cole–Cole plots), which have proved to be exceptionally useful in that field for decades. We compare this analytical tool that is well developed and extensively used in dielectric relaxation and chemical kinetics to fluorescence measurements.  相似文献   

13.
We present a time-gated, optically sectioned, hyperspectral fluorescence lifetime imaging (FLIM) microscope incorporating a tunable supercontinuum excitation source extending into the UV. The system is capable of resolving the excitation spectrum, emission spectrum, and fluorescence decays in an optically sectioned image.  相似文献   

14.
15.
The current advances of fluorescence microscopy and new fluorescent probes make fluorescence resonance energy transfer (FRET) a powerful technique for studying protein-protein interactions inside living cells. It is very hard to quantitatively analyze FRET efficiency using intensity-based FRET imaging microscopy due to the presence of autofluorescence and spectral crosstalks. In this study, we for the first time developed a novel photobleaching-based method to quantitatively detect FRET efficiency (Pb-FRET) by selectively photobleaching acceptor. The Pb-FRET method requires two fluorescence detection channels: a donor channel (CH 1 ) to selectively detect the fluorescence from donor, and a FRET channel (CH 2 ) which normally includes the fluorescence from both acceptor and donor due to emission spectral crosstalk. We used the Pb-FRET method to quantitatively measure the FRET efficiency of SCAT3, a caspase-3 indicator based on FRET, inside single living cells stably expressing SCAT3 during STS-induced apoptosis. At 0, 6 and 12 h after STS treatment, the FRET efficiency of SCAT3 obtained by Pb-FRET inside living cells was verified by two-photon excitation (TPE) fluorescence lifetime imaging microscopy (FLIM). The temporal resolution of Pb-FRET method is in second time-scale for ROI photobleaching, even in microsecond time-scale for spot photobleaching. Our results demonstrate that the Pb-FRET method is independent of photobleaching degree, and is very useful for quantitatively monitoring protein-protein interactions inside single living cell.  相似文献   

16.
In this paper, a novel configuration of an integrated phase-resolved (PR) fingerprint fluorescence imaging system is proposed and implemented. In this integrated PR imaging system, a current modulated 402 nm dual diode laser is proposed to be the light source, to obtain both high laser power and easy modulability. To estimate the lifetime resolution of this PR imaging system, a novel method of using distance-selective suppression of fluorescence signals from two identical fluorescing samples is proposed. Detailed theoretical and experimental analyses are presented. The experimental results demonstrate that this integrated PR imaging system has a lifetime resolution of 0.1 ns. Fingerprint detection experiments are also carried out using this system with latent fingerprints deposited on substrates of aluminum foil and currency.  相似文献   

17.
The biosciences require the development of methods that allow a non-invasive and rapid investigation of biological systems. In this aspect, high-end imaging techniques allow intravital microscopy in real-time, providing information on a molecular basis. Far-field fluorescence imaging techniques are some of the most adequate methods for such investigations. However, there are great differences between the common fluorescence imaging techniques, i.e., wide-field, confocal one-photon and two-photon microscopy, as far as their applicability in diverse bioscientific research areas is concerned. In the first part of this work, we briefly compare these techniques. Standard methods used in the biosciences, i.e., steady-state techniques based on the analysis of the total fluorescence signal originating from the sample, can successfully be employed in the study of cell, tissue and organ morphology as well as in monitoring the macroscopic tissue function. However, they are mostly inadequate for the quantitative investigation of the cellular function at the molecular level. The intrinsic disadvantages of steady-state techniques are countered by using time-resolved techniques. Among these fluorescence lifetime imaging (FLIM) is currently the most common. Different FLIM principles as well as applications of particular relevance for the biosciences, especially for fast intravital studies are discussed in this work.   相似文献   

18.
The effect of the cholesterol (ch) on liposomes composed of the cationic lipid dioctadecyldimethylammonium bromide (DODAB) was assessed by studying both the steady-state and time-resolved fluorescence anisotropy of the dye Nile Red. The information obtained combined with analysis of the steady-state emission and fluorescence lifetime of Nile Red (NR) for different cholesterol concentrations (5–50%) elucidated the presence of “condensed complexes” and cholesterol-rich domains in these mixed systems. The steady-state fluorescence spectra were decomposed into the sum of two lognormal emissions, emanating from two different states, and the effect of temperature on the anisotropy decay of Nile Red for different cholesterol concentrations was observed. At room temperature, the time-resolved anisotropy decays are indicative of NR being relatively immobile (manifest by a high r value). At higher temperature, rotational times ca. 1 ns were obtained throughout and a trend in increasing hindrance was seen with increase of Ch content.  相似文献   

19.
Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors.  相似文献   

20.
The biosciences require the development of methods that allow a non-invasive and rapid investigation of biological systems. In this aspect, high-end imaging techniques allow intravital microscopy in real-time, providing information on a molecular basis. Far-field fluorescence imaging techniques are some of the most adequate methods for such investigations. However, there are great differences between the common fluorescence imaging techniques, i.e., wide-field, confocal one-photon and two-photon microscopy, as far as their applicability in diverse bioscientific research areas is concerned. In the first part of this work, we briefly compare these techniques. Standard methods used in the biosciences, i.e., steady-state techniques based on the analysis of the total fluorescence signal originating from the sample, can successfully be employed in the study of cell, tissue and organ morphology as well as in monitoring the macroscopic tissue function. However, they are mostly inadequate for the quantitative investigation of the cellular function at the molecular level. The intrinsic disadvantages of steady-state techniques are countered by using time-resolved techniques. Among these fluorescence lifetime imaging (FLIM) is currently the most common. Different FLIM principles as well as applications of particular relevance for the biosciences, especially for fast intravital studies are discussed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号