共查询到20条相似文献,搜索用时 10 毫秒
1.
《Current Applied Physics》2018,18(2):254-260
The use of paper as a platform to manufacture organic electronic devices, electronic paper, has expanding potential for many applications because of several properties offered. In this work, we show a study of PEDOT:PSS printed by inkjet on bond paper, vegetal paper and sheets of PET. The relation between the surface density of the deposited material, morphology and resistivity was investigated for samples printed with a commercial Hewlett-Packard(HP)® printer and Microsoft Word® software. The amount of material deposited, i.e. surface density, was controlled using the print number in the same position and changing the gray scale used in the image formation. Changing the surface density of printed PEDOT:PSS, it is possible to produce a continuous film permeating the papers fibers. Sheet resistances obtained, when 7.0 mg cm−2 of PEDOT:PSS were deposited on the surfaces, were: (a) 413.2 kΩ/Sq for bond paper, (b) 5.6 kΩ/Sq for vegetable paper and (c) 2.3 kΩ/Sq for PET. The exponential dependence of sheet resistance with the surface density of printed material allows us to evaluate the strong influence of substrate roughness on PEDOT:PSS conductivity and to predict, for each one, conditions to minimize it. 相似文献
2.
Effect of sorbitol doping in PEDOT:PSS on the electrical performance of organic photovoltaic devices
Organic photovoltaic cells have important advantages, such as low cost and mechanical flexibility. The conducting polymer poly(3,4 ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely used as an interfacial layer or a polymer electrode in polymer electronic devices, such as photovoltaic devices and light-emitting diodes. In this report, we discuss the direct current (DC) conductivity of PEDOT:PSS films containing various weight ratios of sorbitol dopant. The work function is shown to steadily decrease with increasing dopant content. With different dopant contents, illuminated current–voltage photovoltaic characteristics were observed. Ultraviolet photoelectron spectroscopy (UPS) analysis revealed that the work function of the PEDOT:PSS was affected by its sorbitol content. The morphologies of the doped PEDOT:PSS films were characterized by atomic force microscopy (AFM). For the device fabrication, we made organic photovoltaic cells by a spin-coating process and Al deposition by thermal evaporation. The sorbitol dopant is able to improve the efficiency of the device. 相似文献
3.
We develop a heterojunction-based Schottky solar cell consisting of n-type GaN and PEDOT:PSS and also investigate the effect of annealing on the performance of the solar cell. The results show that the open circuit voltage (Voc) increases from 0.54 V to 0.56 V, 0.71 V and 0.82 eV while decreases to 0.69 eV after annealing at 100 ℃, 130 ℃, 160 ℃, and 200 ℃, respectively, which can be ascribed to the change of barrier height of PEDOT:PSS/GaN Schottky contact induced by variation of the work function of the PEDOT:PSS. Furthermore, the conductivity and surface roughness measurements of the PEDOT:PSS indicate that annealing can increase the grain size and improve the connectivity between PEDOT and PSS particles, and cause thermal degradation at the same time, which leads to the rise in short-circuit current density (ISC) up to 160 ℃ and the dropoff in ISC after annealing at 200 ℃. 相似文献
4.
In-situ characterization of electrochromism based on ITO/PEDOT:PSS towards preparation of high performance device 下载免费PDF全文
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) is usually sandwiched between indium tin oxide(ITO) and a functional polymer in order to improve the performance of the device. However, because of the strong acidic nature of PEDOT:PSS, the instability of the ITO/PEDOT:PSS interface is also observed. The mechanism of degradation of the device remains is unclear and needs to be further studied. In this article, we investigate the in-situ electrochromism of PEDOT:PSS to disclose the cause of the degradation. X-ray photoelectron spectroscopy(XPS) was used to characterize the PEDOT:PSS films, as well as the PEDOT:PSS plus polyethylene glycol(PEG) films with and without indium ions. The electrochromic devices(ECD) based on PEDOT:PSS and PEG with and without indium ions are carried out by in-situ micro-Raman and laser reflective measurement(LRM). For comparison, ECD based on PEDOT:PSS and PEG films with LiCl, KCl, NaCl or InCl_3 are also investigated by LRM. The results show that PEDOT:PSS is further reduced when negatively biased, and oxidized when positively biased. This could identify that PEDOT:PSS with indium ions from PEDOT:PSS etching ITO will lose dopants when negatively biased. The LRM shows that the device with indium ions has a stronger effect on the reduction property of PEDOT:PSS-PEG film than the device without indium ions. The contrast of the former device is 44%, that of the latter device is about 3%. The LRM also shows that the contrasts of the device based on PEDOT:PSS+PEG with LiCl, KCl, NaCl, InCl_3 are 30%, 27%, 15%, and 18%, respectively. 相似文献
5.
Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer 下载免费PDF全文
In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate))(PEDOT:PSS) and its influence on the performance of perovskite solar cells.. The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide(ITO)/PEDOT:PSS/CH_3NH_3PbI_3/PC_(61)BM/Al, where PEDOT:PSS and PC_(61)BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency(PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G(100 mW/cm~2 illumination) after the buffer layer has been modified. 相似文献
6.
Thermoelectric(TE)energy harvesting can effectively convert waste heat into electricity,which is a crucial technology to solve energy concerns.As a promising candidate for energy conversion,poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)has gained significant attention owing to its easy doping,high transparency,and solution processability.However,the TE performance of PEDOT:PSS still needs to be further enhanced.Herein,different approaches have been applied for tuning the TE properties:(i)direct dipping PEDOT:PSS thin films in ionic liquid;(ii)post-treatment of the films with concentrated sulfuric acid(H2SO4),and then dipping in ionic liquid.Besides,the same bis(trifluoromethanesulfonyl)amide(TFSI)anion and different cation salts,including 1-ethyl-3-methylimidazolium(EMIM+)and lithium(Li+),are selected to study the influence of varying cation types on the TE properties of PEDOT:PSS.The Seebeck coefficient and electrical conductivity of the PEDOT:PSS film treated with H2SO4EMIM:TFSI increase simultaneously,and the resulting maximum power factor is 46.7μW·m-1·K-2,which may be attributed to the ionic liquid facilitating the rearrangement of the molecular chain of PEDOT.The work provides a reference for the development of organic films with high TE properties. 相似文献
7.
采用共混-旋涂技术在ITO导电玻璃上制备出经山梨醇掺杂的PEDOT:PSS导电膜,将所制得的薄膜作为空穴传输层用于有机太阳能电池研究.通过对比分析掺杂前后光电池暗电流曲线与光电流曲线的变化,考察了山梨醇掺杂对器件光伏性能的影响,并就其中的影响机理进行了讨论分析.结果表明,山梨醇的加入,可以明显提高光电池的短路电流,填充因子以及能量转换效率.较未掺杂器件,8wt %山梨醇掺杂条件下,器件短路电流由8.82 mA/cm2增加至11.27 mA/cm2,FF由0.43
关键词:
PEDOT:PSS薄膜
山梨醇
有机太阳能电池
性能 相似文献
8.
《Current Applied Physics》2020,20(2):277-281
Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) films were fabricated using an electrospray deposition (ESD) method. The ESD PEDOT:PSS films exhibited higher PSS content on the surface than spin-coated PEDOT:PSS films, which results in a higher work function. Based on this result, metal-electrode-free inverted organic photovoltaics (OPVs) were fabricated. The ESD PEDOT:PSS was used as the top electrode on the poly(3-hexythiophene-2,5-diyl) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM) light-absorbing layer. The power conversion efficiency (PCE) of OPVs was significantly increased with the 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile layer. The improved PCE would be attributed to the suppression of exciton quenching at the P3HT:PCBM and PEDOT:PSS interface. 相似文献
9.
Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer 下载免费PDF全文
Zi-Jun Wang 《中国物理 B》2022,31(8):87802-087802
In order to fabricate high-performance inverted perovskite solar cells (PeSCs), an appropriate hole transport layer (HTL) is essential since it will affect the hole extraction at perovskite/HTL interface and determine the crystallization quality of the subsequent perovskite films. Herein, a facile and simple method is developed by adding ethanolamine (ETA) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as HTL. The doping of a low-concentration ETA can efficiently modify the electrical properties of the PEDOT:PSS film and lower the highest occupied molecular orbital (HOMO) level, which is more suitable for the hole extraction from the perovskite to HTL. Besides, ETA-doped PEDOT:PSS will create a perovskite film with larger grain size and higher crystallinity. Hence, the results show that the open-circuit voltage of the device increases from 0.99 V to 1.06 V, and the corresponding power conversion efficiency (PCE) increases from 14.68% to 19.16%. The alkaline nature of ethanolamine greatly neutralizes the acidity of PEDOT:PSS, and plays a role in protecting the anode, leading the stability of the devices to be improved significantly. After being stored for 2000 h, the PCE of ETA-doped PEDOT:PSS devices can maintain 84.2% of the initial value, which is much higher than 67.1% of undoped devices. 相似文献
10.
F.A.R. SilvaM.J.A. Sales R.S. AngélicaE.R. Maia A.M. Ceschin 《Applied Surface Science》2011,257(20):8594-8599
In this work, the mixture poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with monobasic potassium phosphate (KDP), a piezoelectric salt, was studied as a novel material in the fabrication of a low cost, easy-to-make, flexible pressure sensing device. Firstly a theoretical study was carried out, followed by an experimental study where the mixture PEDOT:PSS and KDP was deposited in a flexible polyester substrate and dried. Afterwards, XRD analysis and impulse voltage measures were performed. The results showed that the KDP does not react chemically with PEDOT:PSS and this mixture acts directly responding to the pressure applied on the sample. 相似文献
11.
空穴注入层对蓝色有机电致发光器件性能的影响 总被引:1,自引:0,他引:1
以DPVBi为发光层,NPB为空穴传输层,在阳极ITO和NPB之间分别插入不同的空穴注入层CuPc和PEDOT:PSS,制备了两种结构的蓝色有机电致发光器件(OLEDs):ITO/CuPc/NPB/DPVBi/BCP/Alq3/Al和ITO/PEDOT:PSS/NPB/DPVBi/BCP/Alq3/Al,研究了不同空穴注入材料对蓝色OLEDs发光性能的影响,并与没有空穴注入层的器件进行了比较.其中CuPc分别采用旋涂和真空蒸镀两种丁艺,比较了不同成膜工艺对器件发光特性的影响.结果表明:加入空穴注入层的器件比没有空穴注入层器件性能要好,其中插入水溶性CuPc的器件,其发光亮度和效率虽然比蒸镀CuPc器件要低,但比插入PEDOT:PSS 器件发光性能要好.又由于水溶性CuPc采用旋涂工艺成膜,与传统CuPc相比,制备工艺简单,所以为一种不错的空穴注入材料. 相似文献
12.
采用旋涂法对PEDOT∶PSS薄膜进行了酸处理,研究了不同方法处理PEDOT∶PSS薄膜对器件ITO/酸处理PEDOT∶PSS/NPB/Alq3/Li F/Al性能的影响。实验结果表明:用盐酸(草酸)处理PEDOT∶PSS薄膜时,以0.75 mol/L的盐酸(草酸)在120℃下退火15 min时性能更好,最大电流效率达到4.28 cd/A。并且盐酸、草酸处理PEDOT∶PSS薄膜制备器件比未处理PEDOT∶PSS薄膜制备器件的电流效率明显提高了34%。 相似文献
13.
In this work, we investigated for the first time the characteristics of (poly (3-hexylthiopene) and [6, 6]-phenyl C61-butyric acid methyl ester) (P3HT:PCBM) blends-based organic solar cell with 1.25?mg/mL boric-acid (H3BO3)-doped poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer which is irradiated under the 40 Gray (Gy) dose of gamma (γ) ray. Experimental results showed that the parameters of solar cell improved with exposure to low-dose gamma radiation. In particular, it has provided a significant improvement in short-circuit current density (Jsc) and power conversion efficiency (PCE). About 49% increase in PCE to 1.22% and 40% increase in Jsc to 6.28?mA/cm2 was obtained between the bare device and the device containing irradiated PEDOT:PSS:H3BO3. Also, it was determined that the H3BO3-doped PEDOT:PSS is more stable to temperature. More importantly, solar cell containing gamma-irradiated PEDOT:PSS:H3BO3 showed best performance comparing to conventional PEDOT:PSS-based cell. 相似文献
14.
The nanostructure n-ZnO/p-Si heterojunction diode was fabricated by sol–gel method. The structural and morphological properties of the nanostructure ZnO film have been investigated. The X-ray diffraction spectra indicated that the films are of polycrystalline nature. The scanning electron microscopy images indicate that the surface morphology of ZnO film is almost homogeneous and the ZnO film is consisted of the circular formed with coming together of the nanoparticles. The electrical characterization of nanostructure n-ZnO/p-Si heterojunction diode has been investigated by current–voltage characteristics. The ideality factor (n) of the diode was found for different ambient temperatures and the obtained 6.40 value for 296 K is higher than unity due to the interface states between the two semiconductor materials and series resistance. The values of n increased with decreasing ambient temperature. The reverse current of the diode increased with illumination intensity of 100 mW cm−2 and the diode gave a maximum open circuit voltage Voc of 0.19 V and short-circuits current Isc of 8.03 × 10−8 A. 相似文献
15.
The work is concerned with modification of C/C composites by intercalation of copper chloride. The samples of composites were made from graphite fibres and carbon matrix derived from mesophase pitch and from phenol-formaldehyde resin. The samples were prepared by impregnating graphite fibres with a liquid pitch or polymer solution to obtain unidirectional laminates. The laminates were used to prepare the composites which were then subjected to carbonization and graphitization up to 2150 °C. The work discusses the problem relevant to the effect of intercalation on mechanical and electrical properties of composites. The studies indicated that both mesophase pitch-based composites and phenolic-derived carbon-carbon composites changed their electrical and mechanical properties upon intercalation with copper chloride. Electrical conductivity of both types of composites decreased as a result of the damages formed during intercalation. 相似文献
16.
p-CuIn0.7Ga0.3(Se(1?x)Tex)2 type thin films were synthesized by thermal evaporation method on Mo coated glass substrates. To obtain Al/CuIn0.7Ga0.3(Se(1?x)Tex)2/Mo Schottky diode structure for two compositions of x = 0.0 and 0.6, Al metal was evaporated on upper surface of CuIn0.7Ga0.3(Se(1?x)Tex)2 as a front contact. Al/p-CuIn0.7Ga0.3(Se(1?x)Tex)2/Mo structures were annealed temperature range from 150 °C to 300 °C for 10 min under vacuum. The electrical and dielectrical properties of Al/p-CuIn0.7Ga0.3(Se(1?x)Tex)2 (CIGSeTe) Schottky barrier diodes (SBD) have been investigated. Capacitance–Voltage (C–V) characteristics, Conductance–Voltage (G/w–V) characteristics and interface state density were studied in order to obtain electrical and dielectrical parameters. The effects of interface state density (Nss), series resistance (Rs), the dielectric constant (?′), dielectric loss (?″), dielectric loss tangent (tan δ), ac electrical conductivity (σac) and carrier doping densities were calculated from the C–V and G/w–V measurements and plotted as a function of annealing temperature. It was observed that the values of carrier doping density NA for annealing temperature at 150 °C decreased from 2.83 × 10+15 cm?3 to 2.87 × 10+14 cm?3 with increasing Te content from x = 0.0 to 0.6. The series resistance for x = 0.0 found to be between 10 and 75 Ω and between 50 and 230 Ω for x = 0.6 in the range of annealing temperature at 150–300 °C. 相似文献
17.
The effect of laser irradiation on the electrical properties of Li0.5+z Co z Dy x Fe2.5?2z?x O4 ferrite (0.0 ≤ x ≤ 0.2, z = 0.1) has been studied in the temperature range 300 K ≤ T ≤ 750 K at frequencies of 10 kHz?5 MHz, using a LIMO-IR laser diode, at a wavelength of 808 nm. It was found that laser irradiation increases the polarization, the resistivity and the paramagnetic region. As the result of electronic rearrangement and lattice defects, small polorons and clusters were created. The doping of LiCo-Ferrite by Dy3+ increases both the AC and DC resistance of the investigated material. The variation of the AC and DC resistance with the Dy-content (x) obeys the following correlations R ac/100 = 50x 2+4x+0.005 and R dc/1000 = 31x 2+0.099x+0.09, respectively. A peculiar behaviour was obtained for the sample with Dy-content x = 0.075, as the resistance notably decreases. The applicable result is that laser irradiation increases the resistance of LiCo-ferrite by about 17% while its doping by dysprosium at x = 0.15 increases the resistance by about 23%. Its value is nearly stable for the temperature range from 340 to 480 K. 相似文献
18.
Changmin Kim Hwangho LeeByoungho Lee Youngmin LeeSejoon Lee Deuk Young Kim 《Current Applied Physics》2014,14(10):1380-1384
We examine the effects of the oxygen plasma pre-treatments on the material properties of n-ZnO grown on p-Si and characterize the electrical properties of n-ZnO/p-Si heterojunction diodes. The lattice spacing of ZnO becomes larger when the ZnO thin film is grown on the oxygen plasma pre-treated Si substrate. This might be relevant to the growth of (101) ZnO onto the ultra-thin SiO2 interfacial layer, which is formed during the oxygen plasma pre-treatment onto the Si substrate. The formation of SiO2 gives rise to the increase in the donor-like defect Zn interstitial, and the increased grain size improves the carrier mobility. Because of all the above, the differential conductance at the on-state is increased for the n-ZnO/p-Si heterojunction diode. 相似文献
19.
This paper describes the structural, morphological and optical properties of the nano-composite of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and quantum dots (QDs). The ZnSe and CdSe QDs have been synthesized, with the aid of Mercaptoacetic acid (MAA), by a colloidal method with an average size of ~5 to 7 nm. QDs have been embedded in PEDOT:PSS using a simple solution processing approach and has been deposited as thin films by spin coating technique. The QDs embedded PEDOT:PSS enhances the light absorption spectra of samples, prominently in terms of absorption intensity which may consequently improve sensitivity of the optoelectronic devices. 相似文献
20.
The electrical resistivity of a UPdSn single crystal exerted to various hydrostatic pressures was measured as a function of temperature and magnetic field. Clear anomalies in the temperature dependence of resistivity along the c-axis mark the magnetic phase transitions between paramagnetic and antiferromagnetic (AF) state at T N and the AF1?AF2 transition at T 1. Large negative magnetoresistance effects have been observed not only in the AF state as a result of the metamagnetic transition to canted structure at B c , but also at temperatures far above T N . The latter result is attributed to the existence of AF correlations or short range AF orderings in the paramagnetic range. The value of T N increases with increasing applied pressure, whereas T 1 simultaneously decreases. It is also found that B c decreases with increasing pressure. As a consequence, the stability range of the AF-1 phase expands with applied pressure partially on account of the ground-state AF-2 phase. 相似文献