首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic solar cell research has vastly developed in recent years. These organic solar cells however are still limited to low power conversion efficiencies. This has led to the generation of photovoltaic cells based on hybrid nanoparticle-organic polymer materials. The hybrid solar cell has the potential of bridging the efficiency gap which is present in organic and inorganic semiconductor materials. This paper focuses on characterization of fabricated hybrid active layer consisting of organic polymer infused with semiconductor nanoparticles. The active layer was deposited on the substrate using the spin coating technique. Materials used in the active layer are poly (2-methoxy, 5-(2-ethyl hexyloxy) p-phenyl vinylene) MEH-PPV, cadmium telluride (CdTe) and cadmium sulphide (CdS). The fabricated solar cells with active layer of MEH-PPV only were found to have a power conversion efficiency of 0.1% for 1 W, hybrid cell with active layer of MEH-PPV/CdTe has power conversion efficiency of 0.15% for 1 W and hybrid cell with active layer of MEH-PPV/CdTe/CdS has power conversion efficiency of 0.18% for 1 W.  相似文献   

2.
The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.  相似文献   

3.
Study of GaN adsorption on the Si surface   总被引:1,自引:0,他引:1  
The adsorption energy, the band structures and DOS (density of states) of GaN on surface of Si(1 0 0) and Si(1 1 1) are calculated by the first-principle using plane-wave pseudo-potentials method based on the density functional theory in order to know the adsorption between the surface of Si and GaN. The calculation results show that GaN is easier adsorbed on the surface of Si(1 0 0) than the surface of Si(1 1 1) under the same experimental condition. There are strong charge distributions between N and Si atom. The bandgap of GaN on surface of Si(1 0 0) becomes a little narrower than that of pure GaN. On the other hand, GaN film is deposited on the surface of Si(1 0 0) by ECR-MOPECVD (electron cyclotron resonance-plasma enhanced chemical vapor deposition) at low temperature. For substrate of Si(1 1 1), no film is obtained under the same experimental condition.  相似文献   

4.
This study examines the usage of well-patterned Au nanoparticles (NPs) as a catalyst for one-dimensional growth of single crystalline Si nanowires (NWs) through the vapor-liquid-solid (VLS) mechanism. The study reports the fabrication of monolayer Au NPs through the self-assembly of Au NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. Results indicate that the spin coating time of Au NPs plays a crucial role in determining the density of Au NPs on the surface of the silicon substrate and the later catalysis growth of Si NWs. The experiments in this study employed optical lithography to pattern Au NPs, treating them as a catalyst for Si NW growth. The patterned Si NW structures easily produced and controlled Si NW density. This approach may be useful for further studies on single crystalline Si NW-based nanodevices and their properties.  相似文献   

5.
Au nanoparticles (NPs) with a size in the 2–12 nm range have been grown in silica by 2 MeV Au-ion implantation and a subsequent thermal annealing in air. The as-prepared Au NPs were irradiated with 10 MeV Si ions elongating some of them. From transmission electron microscopy in Z-contrast mode, we observed a narrow size distribution of the minor axis of the deformed NPs, which presents its higher frequency around 6–7 nm and have a saturation about 9 nm. This final result agrees well with the diameter of the track formed by Si ions of 10 MeV in silica, supporting the thermal spike model, which would explain the deformation of the NPs. In this model, the NP melts and creeps along the ion track. Our results show that the NP crystallization is in the fcc structure. On the other hand, a 200 keV electron irradiation provoked roundness on the previously elongated nanoparticles. This effect was observed in situ by high-resolution transmission electron microscopy, showing additionally that, during the roundness process, the fcc structure, as well as its crystalline orientation, remain unchanged. Thus, this study shows how Au NPs embedded in silica, within this size distribution, keep the fcc bulk structure under both ion and electron irradiations.  相似文献   

6.
CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.  相似文献   

7.
Photothermal laser processing of thin films of H-terminated silicon nanoparticles (Si NPs) is investigated. Ethanolic dispersions of Si NPs with an average diameter of 45 nm are spin-coated on silicon substrates yielding films with thicknesses ≤500 nm. Small-area laser processing is carried out using a microfocused scanning cw-laser setup operating at a wavelength of 532 nm and a 1/e laser spot size of 1.4 μm. In conjunction with microscopic techniques, this provides a highly reproducible and convenient approach in order to study the dependence of the resulting film morphology and composition on the experimental parameters. Processing in air results in strongly oxidized granular structures with sizes between 100 and 200 nm. The formation of these structures is dominated by surface oxidation. In particular, changing the processing parameters (i.e., laser power, writing speed, and/or the background air pressure) has little effect on the morphology. Only in vacuum at pressures <1 mbar, oxygen adsorption, and hence oxide formation, is largely suppressed. Under these conditions, irradiation at low laser powers results in mesoporous surface layers, whereas compact silicon films are formed at high laser powers. In agreement with these results, comparative experiments with films of H-terminated and surface-oxidized Si NPs reveal a strong impact of the surface oxide layer on the film morphology. Mechanistic aspects and implications for photothermal processing techniques, e.g., targeting photovoltaic and thermoelectric applications, are discussed.  相似文献   

8.
High-energy metallic ions were implanted in silica matrices, obtaining spherical-like metallic nanoparticles (NPs) after a proper thermal treatment. These NPs were then deformed by irradiation with Si ions, obtaining an anisotropic metallic nanocomposite, for which its third-order nonlinear optical response was measured using a self-diffraction technique at 532 nm with 26 ps pulses. By adjusting the incident light’s polarization and the angular position of the nanocomposite, the measurements were related to the three linear independent components of its third-order susceptibility tensor, finding a large, but anisotropic, response of around 10−7 esu with respect to other isotropic metallic systems, and establishing a relationship between these components.  相似文献   

9.
Our previous study presented up to 20% power conversion efficiency (PCE) enhancement of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells under the Fe3O4 nanoparticles (NPs) self-assembly (SA) effect by spin coating. Fe3O4 NPs (about 11 nm hydrodynamic diameter) form a thin layer at the top interface of the light absorbing active layer, which results in the generation of PCBM rich region improving the charge transport (Zhang et al. Sol Energ Mat Sol C 160:126–133, 2017). In order to investigate the feasibility of this Fe3O4 NPs SA effect under large-scale production condition, a smooth rod was implemented to mimic roll-to-roll coating technique and yield active layers having about the same thickness as the spin-coated ones. Small angle neutron scattering and grazing incidence X-ray diffraction were employed finding out similar morphologies of the active layers by these two coating techniques. However, rod-coated solar cell’s PCE decreases with the addition of Fe3O4 NPs compared with the one without them. This is because PCBM rich region is not created at the top interface of the active layer due to the absence of Fe3O4 NPs, which is attributed to the weak convective flow and low diffusion rate. Moreover, in the rod-coated solar cells, the presence of Fe3O4 NPs causes decrease in P3HT crystallinity, thus the charge transport and the device performance. Our study confirms the role of spin coating in the Fe3O4 NPs SA effect and enables researchers to explore this finding in other polymer nanocomposite systems.  相似文献   

10.
Gold nanoparticles have applications ranging from catalysts for low temperature oxidation of CO to solar energy capture in the infrared. For all these applications, particle size and shape are critical. In this study, nanoparticle gold formed on GaN nanowires by plasma-enhanced chemical vapor deposition was annealed at temperatures ranging from 150 to 270 °C for 24 h. Particle size was measured before and after annealing using a field emission scanning electron microscope. Ripening of the gold particles was observed even at the lowest annealing temperatures of the study. The particle growth kinetics showed an Arrhenius relationship with activation energy of 27.38 kJ/mol. This value suggests that ripening occurs by particle migration and coalescence rather than adatom diffusion.  相似文献   

11.
High density of Sn nanoparticles (NPs) had been obtained directly on Si(0 0 1) substrate by solid phase epitaxy. The dependence of the morphology and crystallinity of Sn NPs on Sn coverage, annealing temperature and annealing time was investigated by atomic force microscope (AFM) and X-ray diffraction (XRD). Uniform and densely packed (∼1010 cm−2) Sn NPs were obtained at low Sn coverage, low annealing temperature and short annealing time, respectively. The XRD results showed that, the formed Sn NPs were in the form of crystalline β-Sn, with a distinct orientation of Sn(1 1 0)//Si(0 0 1). The nucleation activation energy of Sn adatoms on Si(0 0 1) surface was estimated to be 0.41 ± 0.05 eV.  相似文献   

12.
A distinct enhancement of upconversion luminescence from core to core/shell (C/S) structure under low flux near infrared (NIR) excitation at 976 nm has been achieved in lanthanide (Er3+, Yb3+)-doped NaYF4 core with undoped NaYF4 shell nanoparticles (NP). A green chemistry approach has been taken to synthesize monodisperse monophasic C/S NP with the core (~20 nm) and shell (~5 nm) crystallizing into cubic phase. Hydrophobic C/S NP have been further made hydrophilic by coating a transparent SHMP layer without affecting luminescence. C/S (NaYF4: Er, Yb/NaYF4) NP integrated dye-sensitized solar cell indicated 11.9% enhancement in overall conversion efficiency under AM 1.5 conditions, due to NIR–visible spectrum modification by fluorescent NPs. The results indicate great potential of such upconverting C/S nanophosphor in solar cell applications.  相似文献   

13.
4-(Dimethylamino)pyridine-coated gold nanoparticles (DMAP-Au NPs) were synthesized, characterised and their interaction with DNA and living cells was analysed. Concerning the interaction of the DMAP-Au NPs with DNA, absorbance titrations indicate that a non-covalent interaction between DNA and the external surface of the NPs does take place. The binding constant was evaluated to be (2.8 ± 0.8) × 105 M−1. Exposure of cultured cells to NPs revealed a dose-dependent effect on cell proliferation which was increased or reduced in dependence of DMAP-Au NPs concentrations. Subcellular localisation by transmission electron microscopy showed mitochondrial and nuclear localisations of NPs, thus suggesting their direct involvement in the mitochondrial alterations observed and a possible direct interaction with cell DNA. These findings clearly indicate that DMAP-Au NPs can strongly interact with living cells and confirm the importance of systematic evaluations of NPs properties, also in the perspective of their arising diagnostic and therapeutic applications.  相似文献   

14.
We report a straightforward approach to prepare multifunctional manganese–gold nanoparticles by attaching Mn(II) ions onto the surface of 20 nm citrate-capped gold nanoparticles. In vitro MRI measurements made in agarose gel phantoms exhibited high relaxivity (18.26 ± 1.04 mmol−1 s−1). Controlled incubation of the nanoparticles with mesenchymal stem cells (MSCs) was used to study cellular uptake of these particles and this process appeared to be controlled by the size of the nanoparticle aggregates in the extracellular solution. SEM images of live MSCs showed an increased concentration of particles near the cell membrane and a distribution of the size of particles within the cells. Survivability for MSCs in contact with Mn–Au NPs was greater than 97% over the 3-day period and up to the 1 mM Mn used in this study. The high relaxivity and low cell mortality are suggestive of an enhanced positive contrast agent for in vitro or in vivo applications.  相似文献   

15.
Nanostructured GaN layers are fabricated by laser-induced etching processes based on heterostructure of n-type GaN/AlN/Si grown on n-type Si(111) substrate. The effect of varying laser power density on the morphology of GaN nanostructure layer is observed. The formation of pores over the structure varies in size and shape. The etched samples exhibit dramatic increase in photoluminescence intensity compared to the as-grown samples. The Raman spectra also display strong band at 522 cm−1 for the Si(111) substrate and a small band at 301 cm−1 because of the acoustic phonons of Si. Two Raman active optical phonons are assigned h-GaN at 139 and 568 cm−1 due to E2 (low) and E2 (high), respectively. Surface morphology and structural properties of nanostructures are characterized using scanning electron microscopy and X-ray diffraction. Photoluminance measurement is also taken at room temperature by using He–Cd laser (λ = 325 nm). Raman scattering is investigated using Ar+ Laser (λ = 514 nm).  相似文献   

16.
We report to apply Al nanoparticles (NPs) to enhance the photovoltaic response of crystalline- or c-Si solar cell from the ultraviolet (UV) throughout the visible and near infrared (NIR) regimes. Al NPs were induced by solid thermal annealing and embedded in a SiO2 layer that was to passivate the front side of solar cell. Upon the excitation of surface plasmons (SPs) on the Al NPs under light illumination, an enhancement of broadband absorption of the solar cell was observed. The incorporation of Al NPs led to a relative 13.8% increase in photoelectric conversion efficiency of c-Si solar cell, and an external quantum efficiency enhancement from the UV throughout the visible and NIR regimes. The improvement of c-Si solar cell performance was attributed to both effects of absorption and scattering by SPs.  相似文献   

17.
In this study, in situ control growth of bismuth nanoparticles (Bi0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.  相似文献   

18.
Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2–5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.  相似文献   

19.
Multifunctional nanoparticles (NPs) combining the superparamagnetism of Mn−Zn ferrite and the fluorescence property of gold nanoclusters (NCs) have been prepared by wet chemistry. Magnetic NPs synthesized by co-precipitation method were coated several times with oppositely charged polyelectrolytes (PEs) using the layer-by-layer technique. Common techniques (Fourier transform infrared spectroscopy, electron microscopy, zeta potential, etc.) indicated the monodispersity and the stability of the coated NPs providing a positive charged surface. Fluorescent gold NCs bound to a standard protein bovine serum albumin were adsorbed on the surface of the magnetic NPs. Structural investigations proved the presence of small gold clusters (~2 nm) in a shell surrounding the magnetic nanomaterial. The stable nanocomposite kept the original fluorescence property of the metal clusters with 211-fold increase of the red emission (λ = 690 nm) compared to the uncoated NPs. These NPs can be moved with a permanent magnet despite a 72-wt% increase of the non-magnetic fraction due to the PE coating and the protein adsorption.  相似文献   

20.
A photodiode with planar heterojunction was fabricated using copper (II) phthalocyanine (CuPc) organic semiconductor and zinc oxide (ZnO) inorganic nanoparticles (NPs, ~5 nm). The current–voltage (I–V) characteristics of ITO/ZnO NPs/CuPc/Ag device in dark and under illumination with a solar simulator were investigated in detail. The measurement results showed that the device exhibited good rectifying behavior in dark and under illumination. A rectification ratio (RR) of 15.44 at 1.95 V was achieved for the device under 100 mW/cm2 illumination power. Also, the RR of the device as a function of light intensity was observed. The photoresponsive mechanism of the photodiode was illuminated in term of its energy band diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号