首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Honey S  Naseem S  Ishaq A  Maaza M  Bhatti M T  Wan D 《中国物理 B》2016,25(4):46105-046105
A random two-dimensional large scale nano-network of silver nanowires(Ag-NWs) is fabricated by MeV hydrogen(H~+) ion beam irradiation. Ag-NWs are irradiated under H~+ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H~+ion beam-induced welding of Ag-NWs at intersecting positions. H~+ion beam induced welding is confirmed by transmission electron microscopy(TEM) and scanning electron microscopy(SEM). Moreover, the structure of Ag NWs remains stable under H~+ion beam, and networks are optically transparent. Morphology also remains stable under H~+ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H~+ion beam irradiation.The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices.  相似文献   

2.
《Solid State Ionics》2006,177(26-32):2575-2579
Swift heavy ion irradiation of P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system with 48 MeV Li3+ ions having five different fluences was investigated with a view to increase the Li+ ion diffusivity in the electrolyte. Irradiation with swift heavy ion (SHI) shows enhancement of conductivity at lower fluences and decrease in conductivity at higher fluences with respect to unirradiated polymer electrolyte films. Maximum room temperature (303 K) ionic conductivity is found to be 2.2 × 10 2 S/cm after irradiation with fluence of 1011 ions/cm2. This interesting result could be ascribed to the fluence-dependent change in porosity and to the fact that for a particular ion beam with a given energy higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in the decrease in ionic conductivity. The XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤ 1011 ions/cm2) and increase in crystallinity at high fluences (> 1011 ions/cm2). The scanning electron micrographs (SEM) exhibit increased porosity of the polymer electrolyte films after low fluence ion irradiation.  相似文献   

3.
The degradation of oligonucleotide films containing differing base sequences induced by 4 keV C+ ions has been studied experimentally. The oligonucleotides were deposited onto a gold coated stainless steel substrate and the anions and cations released from the films were analyzed by a quadrupole mass spectrometer. The total ion desorption yield was recorded as a function of time using a constant C+ ion flux of 6 × 1014 ions cm-2 s-1. At low fluences the formation of small ionic fragments was observed, whilst for fluences greater than 1.2 × 1018 ions cm-2 molecules were sputtered from the substrate. In addition to studies of the influence of a particular base to the total cation desorption yield, the effect of base substitution with bromine was measured for negative ion desorption. These results showed a strong degradation of oligonucleotide films during ion bombardment.  相似文献   

4.
《Current Applied Physics》2015,15(2):129-134
Vanadium silicides are of increasing interest because of applications in high temperature superconductivity and in microelectronics as contact materials due to their good electrical conductivity. In the present work ion beam induced mixing at Si/V/Si interface has been investigated using 120 MeV Au ions at 1 × 1013 to 1 × 1014 ions/cm2 fluence at room temperature. V/Si interface was characterized by Grazing Incidence X-Ray Diffraction (GIXRD), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectrometry (RBS) and Cross-sectional Transmission Electron Microscopy (XTEM) techniques before and after irradiation. It was found that the atomic mixing width increases with ion fluence. GIXRD and RBS investigations confirm the formation of V6Si5 silicide phase at the interface at the highest ion irradiation dose.  相似文献   

5.
We report on the effect of light-ion irradiation on the size distribution of etched tracks produced by medium energy heavy-ions in polycarbonate. Makrofol KG polycarbonate foils were treated with 2 MeV H+ ions at different fluences φ either before or after a short irradiation with 18 MeV Au7+. The heavy ion irradiation was used to produce the latent tracks in the foils and the proton beam acted as a perturbation to the matrix. The proton irradiation causes initially a decrease in the mean etched pore size, as compared to samples only bombarded by Au ions, reaching a minimum at H+ fluences around 2–5×1013 cm−2, while at higher φ the pore size starts to grow again. This effect is attributed to the action of two competitive processes that dominate in different fluence regimes. The decrease in the pore radii at low fluences is attributed to an increase in crystallinity induced by the proton beam. As the total dose builds up, this effect is surpassed by chain scission and amorphization that grow at a lower rate and cause the pore radii to increase again.  相似文献   

6.
《Current Applied Physics》2014,14(3):312-317
Ripple patterns on Si (100) surface have been fabricated using 200 keV Ar+ oblique ion beam irradiation. Dynamical evolution of patterns is studied for the fluences ranging from 3 × 1017 ions/cm2 to 3 × 1018 ions/cm2. AFM study reveals that the exponential growth of roughness with stable wavelength of ripples up to higher fluence values is lying in the linear regime of Continuum models. Stylus Profilometer measurement was carried out to emphasize the role of sputtering induced surface etching in ripple formation. Rutherford Backscattering Spectroscopy shows the incorporation of Ar in the near surface region. Observed growth of ripples is discussed in the framework of existing models of surface patterning. Role of ion beam sputtering induced surface etching is emphasized in formation of ripples. In addition, the wetting study is performed to demonstrate the possibility of engineering the hydrophilicity of ripple patterned Si (100) surface.  相似文献   

7.
ZnO single crystals were implanted with Mn, Co and Ni with fluences between 1 × 1016 cm-2 and 1 × 1017 cm-2 and energy of 200 keV. Results indicate that aggregation of transition metal ions in the as implanted state occurs only in the case of Ni. After an annealing stage to recover the ZnO structure aggregation occurs for the higher fluences of all implanted species. For lower concentrations paramagnetic behaviour with magnetic moments close to those of individual ions is observed. No polarised impurity band is formed as a result of the presence of transition metal ions and all samples show electrical conduction by carriers in extended states of ZnO. Significant values of magnetoresistance are measured at low temperatures, where electrical transport is described by hopping mechanisms between localized states. The sign of the magnetoresistance is dependent of the doping ion and is correlated with the observed aggregation.  相似文献   

8.
This work examines the properties of polyvinyl alcohol (PVA)/starch film containing glycerol as a plasticizer under exposure to different nitrogen ion fluence. The prepared PVA/starch blend was irradiated with ion fluence from 3 × 1017 to 12 × 1017 ions.cm−2. From FTIR, the ion beam irradiation attack and weakens the C–H bond in PVA/starch blend. From XRD findings, the crystallite size of the blend decreased at 3 × 1017 ions/cm2 while it increased at higher fluence up to 9 × 1017 ions/cm2. This indicates the degradation of the blend at low ion fluence compared to crosslinking at high ion fluence. Also, the optical bandgap of the blend was decreased with an increase in ion fluence. Furthermore, the effect of N+ ions on some optical dispersion parameters is studied. The thermal stability of the PVA/starch blend shows a decrease in thermal stability upon irradiation with 3 × 1017 ions/cm2 compared to higher thermal stability at higher doses up to 9 × 1017 ions/cm2.  相似文献   

9.
The β-SiC nanocrystals were synthesized by the implantation of carbon ions (C) into silicon followed by high-temperature annealing. The carbon fluences of 1×1017, 2×1017, 5×1017, and 8×1017 atoms/cm2 were implanted at an ion energy of 65 keV. It was observed that the average size of β-SiC crystals decreased and the amount of β-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100 °C for 1 h. However, it was observed that the amount of β-SiC linearly increased with the implanted fluences up to 5×1017 atoms/cm2. Above this fluence the amount of β-SiC appears to saturate. The Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, and X-ray diffraction (XRD) techniques were used to characterize the samples.  相似文献   

10.
This study is structured on Li3+ ion irradiation effect on the different properties of selenium (Se) nanowires (NW's) (80 nm). Template technique was employed for the synthesis of Se nanowires. Exploration of the effect of 10 MeV Li3+ ions on Se NW's was done for structural and electrical analysis with the help of characterization tools. X-ray diffraction revealed the variation in peak intensity only, with no peak shifting. The grain size and texture coefficients of various planes were also found to vary. Current-Voltage characteristics (IVC) show an increment in the conductivity up to a fluence of 1×1012 ions/cm2 and a decrease at the next two fluences. The effects of irradiation are presented in this paper and possible reasons for the variation in properties are also discussed in this study.  相似文献   

11.
The prospects for SIMS three-dimensional analysis of biological materials were explored using model multilayer structures. The samples were analyzed in a ToF-SIMS spectrometer equipped with a 20 keV buckminsterfullerene (C60+) ion source. Molecular depth information was acquired using a C60+ ion beam to etch through the multilayer structures at specified time intervals. Subsequent to each individual erosion cycle, static SIMS spectra were recorded using a pulsed C60+ ion probe. Molecular intensities in sequential mass spectra were monitored as a function of primary ion fluence. The resulting depth information was used to characterize C60+ bombardment of biological materials. Specifically, molecular depth profile studies involving dehydrated dipalmitoyl-phosphatidylcholine (DPPC) organic films indicate that cell membrane lipid materials do not experience significant chemical damage when bombarded with C60+ ion fluences greater than 1015 ions/cm2. Moreover, depth profile analyses of DPPC-sucrose frozen multilayer structures suggest that biomolecule information can be uncovered after the C60+ sputter removal of a 20 nm overlayer with no appreciable loss of underlying molecular signal. The experimental results support the potential for three-dimensional molecular mapping of biological materials using cluster SIMS.  相似文献   

12.
Nanocomposite polymer electrolyte thin films of polyvinyl alcohol (PVA)-orthophosphoric acid (H3PO4)-Al2O3 have been prepared by solution cast technique. Films are irradiated with 50 MeV Li3+ ions having four different fluences viz. 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions/cm2. The effect of irradiation on polymeric samples has been studied and characterized. X-ray diffraction spectra reveal that percent degree of crystallinity of samples decrease with ion fluences. Glass transition and melting temperatures have been also decreased as observed in differential scanning calorimetry. A possible complexation/interaction has been shown by Fourier transform infrared spectroscopy. Temperature-dependent ionic conductivity shows an Arrhenius behavior before and after glass transition temperature. It is observed that ionic conductivity increases with ion fluences and after a critical fluence, it starts to decrease. Maximum ionic conductivity of ~2.3?×?10?5 S/cm owing to minimum activation energy of ~0.012 eV has been observed for irradiated electrolyte sample at fluence of 5?×?1011 ions/cm2. The dielectric constant and dielectric loss also increase with ion fluences while they decrease with frequency. Transference number of ions shows that the samples are of purely ionic in nature before and after ion irradiation.  相似文献   

13.
In the present investigation we have electrochemically synthesized polypyrrole–poly (n-methylpyrrole) composite film with optimized process parameters (viz. concentration of monomers and dopant, applied current density, deposition time, pH of electrolyte etc.) on platinum substrate. The composite film of polypyrrole–poly (n-methylpyrrole) was subjected to electrical, spectral and morphological characterizations and its sensing response to various concentration of ammonia was also studied. Later, the synthesized composite films were irradiated under high vacuum (∼5×10−6 Torr) at room temperature with 85 MeV O7+ ion beam at various fluences from 1×105 to 1×107 ions/cm2. We have observed remarkable improvements in electrical and morphological properties suitable for gas-sensing applications. The irradiated composite film was evaluated for the sensing of various concentrations of ammonia and excellent improvement in terms of sensitivity, lower detection limit and response time was observed.  相似文献   

14.
Absolute cross sections for electron-impact single ionization, dissociative excitation and dissociative ionization of the ethynyl radical ion (C2D+)^+) have been measured for electron energies ranging from the corresponding reaction thresholds to 2.5 keV. The animated crossed electron-ion beam experiment is used and results have been obtained for the production of C2D2+, C2+, C2+_2^+ , CD+, C+ and D+. The maximum of the cross section for single ionization is found to be (2.01 ± 0.02) × 10-17 cm2, at the incident electron energy of 105 eV. Absolute total cross sections for the various singly charged fragments production are observed to decrease by a factor of almost three, from the largest cross-section measured for C+, over C2+_2^+ and CD+ down to that of D+. The maxima of the cross sections are obtained to be (14.5 ± 0.5) × 10-17 cm2 for C2+_2^+, (12.1 ± 0.1) × 10-17 cm2 for CD+, (27.7 ± 0.2) × 10-17 cm2 for C+ and (11.1 ± 0.8) × 10-17 cm2 for D+. The smallest cross section is measured to be (1.50 ± 0.04) × 10-18 cm2 for the production of the doubly charged ion C2+. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product. The cross sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic energy release distributions of dissociation fragments are seen to extend from 0 to 6 eV for the heaviest fragment C2+_2^+, up to 11.0 eV for CD+, 14.2 eV for C+ and 11.2 eV for D+ products.  相似文献   

15.
Na self-diffusion, Li self-diffusion, Na+–Li+ ion exchange, electrical conductivity, and mechanical relaxation have been studied below Tg on glasses of the system ZrF4–BaF2–LaF3–AF (A=Na, Li), with A=10, 20, 30 mol%. Compared to the transport mechanism in alkali-containing silicate glasses, the mechanisms in these non-oxide glasses are anomalous. Thus the self-diffusion coefficient of Na decreases with increasing NaF content, whereas that of Li increases with increasing LiF content. Both the electrical conductivity and the Na+–Li+ ion exchange reach a minimum at ≈ 20 mol% LiF, and the mechanical relaxation shows one peak for the 20 and 30 mol% LiF-glasses and two peaks for the glass with 10 mol% LiF, evidencing both a contribution of F and Li+ ions to the transport. Moreover, the presence of the three partially interacting mobile species F, Na+, Li+ obviously leads to an anionic–cationic mixed ion effect. Applying the Nernst–Einstein equation to the Li+ transport in LiF-containing glasses shows that its mechanism is dissimilar to that in oxide glasses. Calculated short jump distances possibly can be interpreted as an Li+ movement via energetically suitable sites near F ions. Likewise the Nernst–Planck model, successfully applied to the ionic transport in mixed alkali silicate glasses, obviously does also not hold for the present heavy metal fluoride glasses.  相似文献   

16.
Ar+ and He+ ions were implanted into Ge samples with (1 0 0), (1 1 0), (1 1 1) and (1 1 2) orientations at 15 K with fluences ranging from 1×1011 to 1×1014 cm−2 for the Ar+ ions and fluences ranging from 1×1012 to 6×1015 cm−2 for the He+ ions. The Rutherford backscattering (RBS) technique in the channelling orientation was used to study the damage built-up in situ. Implantation and RBS measurements were performed without changing the target temperature. The samples were mounted on a four axis goniometer cooled by a close cycle He cryostat. The implantations were performed with the surface being tilt 7° off the ion beam direction to prevent channelling effects. After each 300 keV Ar+ and 40 keV He+ implantation, RBS analysis was performed with 1.4 MeV He+ ions.For both the implantation ions, there is about no difference between the values found for the damage efficiency per ion for the four different orientations. This together with the high value (around 5 times higher than that found in Si), gives rise to the assumption of amorphous pocket formation per incident ion, i.e. direct impact amorphization, already at low implantation fluences. At higher fluences, when collision cascades overlap, there is a growth of the already amorphized regions.  相似文献   

17.
In the present study, the effects of swift heavy ion beam irradiation on the structural, chemical and optical properties of Makrofol solid-state nuclear track detector (SSNTD) were investigated. Makrofol-KG films of 40 μm thickness were irradiated with oxygen beam (O8 + ) with fluences ranging between 1010 ion/cm2 and 1012 ion/cm2. Structural, chemical and optical properties were investigated using X-ray diffraction, FTIR spectroscopy and UV–visible spectroscopy methods. It is observed that the direct and indirect band gaps of Makrofol-KG decrease after the irradiation. The XRD study shows that the crystalline size in the films decreases at higher fluences. The intensity plots of FTIR measurements indicate the degradation of Makrofol at higher fluences. Roughness of the surface increases at higher fluence.  相似文献   

18.
Transition Metal (TM) ions V, Cr, Mn and Co were implanted into GaN/sapphire films at fluences 5×1014, 5×1015 and 5×1016 cm−2. First order Raman Scattering (RS) measurements were carried out to study the effects of ion implantation on the microstructure of the materials, which revealed the appearance of disorder and new phonon modes in the lattice. The variations in characteristic modes 1GaN i.e. E2(high) and A1(LO), observed for different implanted samples is discussed in detail. The intensity of nitrogen vacancy related vibrational modes appearing at 363 and 665 cm−1 was observed for samples having different fluences. A gallium vacancy related mode observed at 277/281 cm−1 for TM ions implanted at 5×1014 cm−2 disappeared for all samples implanted with rest of fluences. The fluence dependent production of implantation induced disorder and substitution of TM ions on cationic sites is discussed, which is expected to provide necessary information for the potential use of these materials as diluted magnetic semiconductors in future spintronic devices.  相似文献   

19.
High-energy ion beam irradiation of the polymers is a good technique to modify the properties such as electrical conductivity, structural behaviour and mechanial properties. Polyaniline thin films doped with hydrochloric acid (HCl) were prepared by oxidation of ammonium persulphate. The effect of Swift Heavy Ions irradiation on the electrical and structural properties of polyaniline has been measured in this study. Polyaniline films were irradiated by oxygen ions (energy 80 MeV, charge state O+7) with fluence varying from 1 × 1010 to 3 × 1012 ions/cm2. The studies on electrical and structural properties of the irradiated polymers were investigated by measuring V-I using four probe set-up and X-ray diffraction (XRD) using Bruker AXS, X-ray powder diffractometer. V-I measurements shows an increase in the conductivity of the film, XRD pattern of the polymer shows that the crystallinity improved after the irradiation with Swift Heavy Ions (SHI), which could be attributed to cross linking mechanism.   相似文献   

20.
Ion-beam induced atomic mixing of Cu/Au bilayer thin film is studied using combined electrical resistivity measurements and Rutherford Backscattering Spectrometry (RBS). 400 keV Kr+ ion irradiation with fluences ranging from 3.3×1015 to 7.6×1016 ions/cm2 at room temperature have been used. Ion beam mixing lead to a uniformly mixed metal alloy. The formation of Cu/Au solid solutions depends on the initial composition and on the fluence of irradiating ions. For an initial composition of Cu42Au58, a Cu-rich solid solution of composition Cu72Au28 is formed after irradiation with 7.6×1016 ions/cm2. The kinematics of the intermixing process is also studied by in situ electrical resistivity measurements which confirmed the formation of the Cu/Au solid solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号