首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
In this study, P3HT:PCBM organic photovoltaic (OPV) devices, with or without ZnO nanoparticles buffer layer between the photoactive layer (P3HT:PCBM) and the cathode (Al top electrode), were fabricated. The devices were annealed at 145 °C either before or after depositing the top electrode. The objective of this study was to investigate the effects of the ZnO buffer layer and pre-/post-fabrication annealing on the general performance of these devices. The short-circuit current density (JSC), open-circuit voltage (VOC) and the external quantum efficiency (EQE) of the OPV devices were improved by the insertion of the ZnO layer and post-fabrication annealing. The post-fabrication annealed devices, with or without the ZnO layer, exhibited higher values of JSC, VOC and EQE than those of similar devices annealed before depositing the Al metal. This can be attributed to, among other things, improved charge transport across the interface between the photoactive layer and the Al top electrode as a result of post-annealing induced modification of the interface morphology.  相似文献   

2.
The inverted polymer:fullerene solar cells with structure of ITO/TiO2/P3HT:PCBM/MoO3/Al have been fabricated, where P3HT and PCBM stand for poly (3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester, respectively. It is discovered that the P3HT:PCBM blend film manipulated into the improved stratification structure, characterized as P3HT crystallite-rich zone close to the top surface and PCBM constituent-rich zone adjacent to the bottom surface, can offer nearly the same power conversion efficiency of solar cell, compared to the one grown into the bulk heterojunction structure, characterized as the bicontinuous interpenetrating network of P3HT and PCBM. We provide an alternative insight to the morphology control of inverted polymer:fullerene solar cells.  相似文献   

3.
《Current Applied Physics》2010,10(4):985-989
In the polymer photovoltaic devices (PVDs), the performance of devices was strongly influenced by region-regularity, number average molecular weight and casting solvents of polymers. In this work, we fabricated p–n bulk-hetero-junction PVDs based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) using various solvents such as chloroform (CF), chlorobenzene (CB), dichlorobenzene (DCB), and mixed solvent (CF/CB, CF/DCB). Thin film of active layer with P3HT/PCBM was prepared by spin coating and thermal annealing at 150 °C with fixed thickness about 110 nm by adjusting solution concentration. The crystalline morphology and layered phase for the active layer were studied by atomic force microscopy and X-ray diffraction, respectively. We investigated the performance of solar cells according to different morphology and crystallinity of active layer by various solvent and mixed solvent.  相似文献   

4.
In this study, we explored the ability of a preheated solvent (methanol) to induce characteristic changes at the organic active layer/metal interface, thereby improving the performance of fabricated organic photovoltaic (OPV) cells composed of poly(3-hexylthiopene) (P3HT) and a [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) photoactive blend. Our results demonstrate that exposure to methanol (at room temperature, or preheated at 45 °C or 65 °C) improves the performance of the fabricated OPV cells. After preheated methanol exposure, the P3HT:PCBM thin films were tested for crystallinity, morphology, mobility, and photovoltaic characteristics. Our results revealed that use of the preheated solvent on the organic active layer significantly influences the micro/nano scale morphology and phase segregation of the P3HT:PCBM thin films, as well as the charge carrier mobility. It is hypothesized that the side chain ordering of P3HT and redistribution of PCBM could be results of the modified active layer. Consequently, OPV cells modified with the methanol preheated at 65 °C exhibited a power conversion efficiency (PCE) of 3.36%, with open-circuit voltage of 0.59 V, short-circuit current density of 13.83 mA/cm2, and fill-factor of 0.41. In contrast, the unmodified P3HT:PCBM thin film (without methanol exposure) showed a PCE of only 2.13%.  相似文献   

5.
Organic field-effect transistor (OFET) structures with the active layers on the basis of composite films of semiconductor polymer poly(3-hexylthiophene) (P3HT), fullerene derivatives [60]PCBM, [70]PCBM, and nickel (Ni) nanoparticles are obtained, and their optical, electrical, and photoelectrical properties are studied. It is shown that introducing Ni nanoparticles into P3HT: [60]PCBM and P3HT: [70]PCBM films leads to an increase in the absorption and to quenching of photoluminescence of the composite in the 400–600 nm spectral band due to the plasmon effect. In P3HT: [60]PCBM: Ni and P3HT: [70]PCBM: Ni OFET structures at the P3HT: [60]PCBM and P3HT: [70]PCBM concentrations of ~1: 1 and Ni concentrations of ~3–5 wt %, current–voltage (I–V) characteristics typical of ambipolar OFETs with the dominant hole conduction are observed. The charge-carrier (hole) mobilities calculated from the I–V characteristic at VG =–10 V were found to be ~0.46 cm2/(V s) for P3HT: [60]PCBM: Ni and ~4.7 cm2/(V s) for P3HT: [70]PCBM: Ni, which means that the mobility increases if [60]PCBM in the composition is replaced with [70]PCBM. The effect of light on the I–V characteristics of P3HT: [60]PCBM: Ni and P3HT: [70]PCBM: Ni OFETs is studied.  相似文献   

6.
The post-annealing effects on the performance of poly (3-hexylthiophene) (P3HT)/(6,6)-phenyl C61 butyric acid methyl ester (PCBM) solar cells with conventional bulk heterojunction (CBHJ) and layer-evolved bulk heterojunction (LBHJ) have been compared. It is found that contrary to the much better performance obtained from CBHJ cells, the post-annealing deteriorates the performance of LBHJ devices. Aqueous contact angle and X-ray photoelectron spectroscopy measurements show that P3HT is dominant at the top surface of CBHJ film, while PCBM is dominant at the top surface of LBHJ film. The micron-scale morphology evolution of the active layer/Al interface upon post-annealing reveals that the PCBM-rich surface is beneficial for the nucleation and growth of PCBM crystal, which does harm to the contact between the active layer and the electrode and results in the decrease of the fill factor. However, the original P3HT-rich surface prevents the formation of large surface-segregated PCBM clusters upon post-annealing, which is highly desirable for the efficient polymer/fullerene solar cells.  相似文献   

7.
研究了二甲基亚砜(DMSO)掺杂浓度对基于聚(3-己基噻吩)(P3HT)和(6,6)-苯基碳60丁酸甲酯(PCBM)为有源层的聚合物太阳能电池性能影响。结果表明,掺杂DMSO可以提高聚合物太阳能电池短路电流密度和填充因子。DMSO掺杂质量比为3%时,电池短路电流密度提高到7.88 mA·cm-2,填充因子为55.5%。能量转换效率达到2.54%,相比没有掺杂DMSO的电池,能量转换效率提高了17%。傅里叶变换红外光谱被用于鉴定和分析掺杂DMSO对材料P3HT∶PCBM化学性质的影响。傅里叶变换红外光谱表明,掺杂后P3HT和PCBM的化学性质都没有改变。为分析掺杂DMSO改善器件能量转换效率的原因,通过紫外-可见光谱和电流密度-电压特性曲线分别表征器件的光吸收能力以及电致发光器件的载流子迁移率。与P3HT∶PCBM薄膜相比,P3HT∶PCBM∶DMSO薄膜在可见光范围内的吸收峰有明显红移且吸收强度增强。可见光吸收的改善是实现短路电流密度提高的有力保障。太阳能电池性能的增强是因为DMSO的掺杂提高了P3HT∶PCBM的载流子迁移率和吸收光谱宽度。  相似文献   

8.
TiO2 based inverted polymer solar cells (PSCs) with a structure of fluorine-doped tin oxide (FTO)/TiO2/P3HT:PCBM/PEDOT:PSS/Ag presented excellent air stabilities,; the power conversion efficiency (PCE) of devices exhibited only 15 % decay as compared to the highest value while being exposed in air-condition for more than 20 days. Interestingly, an overall enhancement of PCE from 3.5 % to 3.9 % was observed while the PSCs were exposed in air-condition up to 3 days; the improvement of performance was attributed to the TiO2 films’ oxygen and water protection effect and the oxidation of Ag, which will benefit to form an effective work function match with the HOMO of P3HT leading to improved ohmic contact. However, the performance slowly decreased when the exposure time remains longer due to the physical adsorbed oxygen. UV–ozone treatment on the TiO2 films’ leads to the formation of a metal-deficient oxide that results in a decreased PCE for the devices. Finally, X-ray photo-emission spectroscopy (XPS) was used to analyze the compositional changes of the TiO2 films while they were exposed in air-condition or treated by UV–ozone.  相似文献   

9.
王桃红  陈长博  郭坤平  陈果  徐韬  魏斌 《中国物理 B》2016,25(3):38402-038402
The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester(P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer(CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode(OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs_2CO_3, bathophenanthroline(Bphen), and 8-hydroxyquinolatolithium(Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies(PCEs) of 3.0%–3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs_2CO_3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.  相似文献   

10.
The efficiency that a solar cell can reach is ultimately limited by the number of photons absorbed in its active layer and the efficiency with which these photons are converted into electrical current. In this study we seek to quantify and separate the optical and electrical efficiencies in photovoltaic devices based on mixtures of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) and regio-regular poly(3-hexylthiophene) (P3HT). The optical efficiency is determined by comparing the measured external quantum efficiency (EQE) and the maximum possible EQE (EQEmax) as determined by modeling the fractional dissipation of light in the active layer at a given wavelength and layer thickness (dactive). We determine, by examining the difference between EQE and EQEmax, that a significant contribution (up to 35%) of the total losses are electrical in nature. Comparison of the internal quantum efficiency (IQE) and the optical intensity distribution as a function of dactive shows photocurrent generation is anti-correlated to light intensity in the vicinity of the PEDOT:PSS/active layer interface. The magnitude of this effect is modeled using standard optical tools and a half Gaussian shaped reduced generation zone (RGZ) centered at this interface. Illumination-intensity (I0) dependent measurements of the short-circuit-current density allows us to exclude vertical segregation and bi-molecular recombination as potential explanations for the RGZ. Examination of the work functions of P3HT and PEDOT:PSS gives evidence that in the devices positive charges build up at the interface due to permanent redox chemistry, leading to the formation of a dipolar layer with holes on the P3HT. The dependence of EQE on I0 at low illumination intensities gives evidence for correlation of the charge build up and the size change of the reduced generation zone. We argue that the only physical phenomenon that explains a region-specific reduction in photocurrent generation and is consistent with a build up of positive charge at the interface is a reduced probability of exciton separation or quenching. In support of our findings, we show that reduction of the light intensity yields increased quantum efficiency consistent with our model. PACS  42.25.bs; 72.40.tw; 72.80.le  相似文献   

11.
Hybrid polymer/inorganic nanoparticle blended ternary solar cells are reported. These solar cells have an active layer consisting of PbS colloidal quantum dots (CQDs), poly (3‐hexylthiophene) (P3HT), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). Power conversion efficiency (PCE) was improved by incorporating PbS CQDs in the active layer of P3HT:PCBM‐based organic solar cells. As the concentration of PbS CQDs in the hybrid solar cells was increased, PCE was also increased. This improvement resulted from improved charge transfer and also extended light absorption into the near‐infrared. The PCE of the hybrid solar cells was 47% higher than that for reference organic solar cells on average under air mass 1.5 global illumination. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Silver nanospheres (Ag NSs) buffer layers were introduced via a solution casting process to enhance the light absorption in poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) bulk heterojunction organic solar cells. These Ag NSs, as surface plasmons, could increase the optical electric field in the photoactive layer whilst simultaneously improving the light scattering. As a result, this buffer layer improves the light absorption of P3HT:PCBM blend and consequently improves the external quantum efficiency (EQE) of organic solar cells. In this work, different sizes of Ag NSs plasmon‐enhanced layer were investigated, with the aim of optimizing the performance of devices. UV‐vis spectrometer measurement demonstrates that the total optical absorption of P3HT:PCBM blend films in the spectral range of 350–650 nm is increased by ~4 and 6% with incorporation of the 20 and 40 nm Ag NSs, respectively. The Jsc was shown to increase by ~21 and 24% for 20 and 40 nm Ag NSs, respectively. This is due to the extra photogenerated excitons by the plasmonic resonance of Ag NSs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
《Current Applied Physics》2020,20(2):277-281
Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) films were fabricated using an electrospray deposition (ESD) method. The ESD PEDOT:PSS films exhibited higher PSS content on the surface than spin-coated PEDOT:PSS films, which results in a higher work function. Based on this result, metal-electrode-free inverted organic photovoltaics (OPVs) were fabricated. The ESD PEDOT:PSS was used as the top electrode on the poly(3-hexythiophene-2,5-diyl) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM) light-absorbing layer. The power conversion efficiency (PCE) of OPVs was significantly increased with the 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile layer. The improved PCE would be attributed to the suppression of exciton quenching at the P3HT:PCBM and PEDOT:PSS interface.  相似文献   

14.
Our previous study presented up to 20% power conversion efficiency (PCE) enhancement of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells under the Fe3O4 nanoparticles (NPs) self-assembly (SA) effect by spin coating. Fe3O4 NPs (about 11 nm hydrodynamic diameter) form a thin layer at the top interface of the light absorbing active layer, which results in the generation of PCBM rich region improving the charge transport (Zhang et al. Sol Energ Mat Sol C 160:126–133, 2017). In order to investigate the feasibility of this Fe3O4 NPs SA effect under large-scale production condition, a smooth rod was implemented to mimic roll-to-roll coating technique and yield active layers having about the same thickness as the spin-coated ones. Small angle neutron scattering and grazing incidence X-ray diffraction were employed finding out similar morphologies of the active layers by these two coating techniques. However, rod-coated solar cell’s PCE decreases with the addition of Fe3O4 NPs compared with the one without them. This is because PCBM rich region is not created at the top interface of the active layer due to the absence of Fe3O4 NPs, which is attributed to the weak convective flow and low diffusion rate. Moreover, in the rod-coated solar cells, the presence of Fe3O4 NPs causes decrease in P3HT crystallinity, thus the charge transport and the device performance. Our study confirms the role of spin coating in the Fe3O4 NPs SA effect and enables researchers to explore this finding in other polymer nanocomposite systems.  相似文献   

15.
於黄忠 《物理学报》2012,61(8):87204-087204
载流子迁移率测量是有机半导体材料与器件研究中的重要内容之一.以聚噻吩为电子给体材料, C60的衍生物为电子受体材料,制备了一种单电荷传输器件.用空间电荷限制电流法测出了不同溶剂形成的 活性层及不同温度热处理后器件中空穴的迁移率.结果表明:器件中电荷的传输J-V曲线符合Mott-Gurney方程, 不同溶剂形成活性层中空穴具有不同的迁移率,高沸点的溶剂1, 2-二氯苯形成的活性层具有较高的空穴迁移率, 热处理有利于器件中空穴迁移率的提高.同时还进一步分析了空穴迁移率变化的原因.  相似文献   

16.
A dual plasmonic resonance effect on the performance of poly(3‐hexylthiophene) (P3HT):phenyl C61‐butyricacid methyl ester (PC61BM) based polymer solar cells (PSCs) has been demonstrated by selectively incorporating 25 nm colloidal gold nanoparticles (Au NPs) in a solution‐processed molybdenum oxide (MoO3) anode buffer layer and 5 nm colloidal Au NPs in the active P3HT:PCBM layer. The devices exhibit up to ~20% improvement in power conversion efficiency which is attributed to the dual effect of localized surface plasmon resonance (LSPR) of Au NPs with enhanced light absorption and exciton generation. Our report shows a guideline on the usage of dual LSPR effect for the solution‐processed polymer solar cells to achieve high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
Thin films of the conjugated polymer poly(3‐hexylthiophene) (P3HT) and blends of the soluble fullerene derivative[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) with P3HT—a well studied but not completely understood donor–acceptor system for organic solar cells—have been studied by means of UV–visible absorption and resonant Raman spectroscopy. Additionally, we have employed atomic force microscopy phase imaging to characterize the nanomorphology of the P3HT : PCBM thin film, revealing a close intermixing of two phases with domain sizes ranging from a few to several tens of nanometers. A systematic analysis of pristine polymer and blend Raman spectra provides evidence that features attributable to PCBM, possibly even depending on the charge state of the fullerene molecule, can be observed. Hence our results suggest that fullerene inclusions in polymer/fullerene blends can be identified via Raman spectroscopy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The development of polymer-based photovoltaic devices brings the promise of low-cost and lightweight solar energy conversion systems. This technology requires new materials and device architectures with enhanced efficiency and lifetime, which depends on the understanding of charge-transport mechanisms. Organic films combined with electronegative nanoparticles may form systems with efficient dissociation of the photogenerated excitons, thus increasing the number of carriers to be collected by the electrodes. In this paper we investigate the steady-state photoconductive action spectra of devices formed by a bilayer of regio-regular poly(3-hexylthiophene) (RRP3HT) and TiO2 sandwiched between ITO and aluminum electrodes (ITO/TiO2:RRP3HT/Al). Photocurrents were measured for distinct bias voltages with illumination from either side of the device. Heterojunction structures were prepared by spin coating a RRP3HT film on an already deposited TiO2 layer on ITO. Symbatic and antibatic curves were obtained and a model for photocurrent action spectra was able to fit the symbatic responses. The quantum yield increased with the electric field, indicating that exciton dissociation is a field-assisted process as in an Onsager mechanism. Furthermore, the quantum yield was significantly higher when illumination was carried out through the ITO electrode onto which the TiO2 layer was deposited, as the highly electronegative TiO2 nanoparticles were efficient in exciton dissociation.  相似文献   

19.
We report the fabrication and characterization of composite nanoparticles consisting of a conducting polymer, poly-3-hexylthiophene (P3HT), doped with varying amounts of [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a material blend that is commonly applied in bulk heterojunction organic photovoltaic devices (OPVs). Single particle spectroscopy (SPS) studies, where nanoparticles are studied one particle at a time, reveal that these nanoparticles have spectroscopic characteristics consistent with the existence of two types of crystalline nanodomains, one with a higher energy emission at 660 nm and one with a lower energy emission at 720 nm. In addition, the occurrence of emission at lower peak energy increases with increasing PCBM doping levels, and the intensity of the lower energy peak emission increases with respect to the higher energy peak emission as well. These data reveal a PCBM concentration dependent formation of two types of P3HT crystalline nanodomains in P3HT/PCBM composite nanoparticles, where the lower energy crystal structure becomes more favored with higher PCBM concentration. This work provides a molecular scale insight in the correlation between changes in morphology of conjugated polymer materials with different weight percentages of fullerene dopants.  相似文献   

20.
为了提高太阳能电池的性能,研究磁性纳米粒子在外加磁场的作用下对聚合物太阳能电池有源层P3HT:PCBM成膜及太阳能电池性能的影响。本文采用热分解法制备了磁性Fe3O4纳米粒子,将不同质量分数的Fe3O4纳米粒子掺入到P3HT:PCBM溶液中,旋涂后在外加磁场的作用下自组成膜。通过TEM、XRD对制备的Fe3O4纳米粒子进行表征,并利用偏光显微镜、原子力显微镜对成膜质量进行探究。结果表明,采用热分解法制备的Fe3O4纳米粒子直径在10 nm左右,在外加磁场作用下,Fe3O4纳米粒子对成膜有一定的调控作用。当Fe3O4纳米粒子掺杂质量分数为1%时,太阳能电池器件的开路电压增加3.77%,短路电流增加24.93%,光电转换效率提高7.82%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号