首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用一种低成本的有效方法制备出了有序排列的海胆状ZnO纳米线阵列。首先利用自组装的方法得到了单层的聚苯乙烯(PS)小球,以其为模板用水热法在小球表面生长ZnO纳米线,得到了由PS小球和ZnO纳米线构成的海胆状结构。纳米线的直径均一,长度可通过水热反应时间进行控制。利用这种方法制备的一维ZnO纳米结构在传感器、太阳能电池及光催化领域有潜在的应用价值。  相似文献   

2.
ZnO nanowire (NW) arrays are assembled on the Al-doped ZnO (AZO) seed layer by a hydrothermal process. Effects of the temperature and growth time of the hydrothermal process on morphological and photoluminescence properties of the as-assembled ZnO NW arrays are characterized and studied. Results indicate that the length and diameter of the ZnO NWs increase with a lengthening of the growth time at 80 °C and the hydrothermal temperature has a significant effect on the growth rate and the photoluminescence properties of the ZnO NW arrays. The patterned AZO seed layer is fabricated on a silicon substrate by combining a sol-gel process with an electron-beam lithography process, as well as a surface fluorination technique, and then the ZnO NW arrays are selectively grown on those patterned regions of the AZO seed layer by the hydrothermal process. Room-temperature photoluminescence spectra of the patterned ZnO NW arrays shows that only a strong UV emission at about 380 nm is observed, which implies that few crystal defects exist inside the as-grown ZnO NW arrays.  相似文献   

3.
A simple and self-catalytic method has been developed for synthesizing finely patterned ZnO nanorods on ITO-glass substrates under a low temperature of 500 °C. The patterned ZnO nanorod arrays, a unit area is of 400 × 100 μm2, are synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized ZnO nanorods are characterized by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism of formation of ZnO nanorods is also discussed. The measurement of field emission (FE) reveals that the as-synthesized ZnO nanorods arrays have a turn-on field of 3.3 V/μm at the current density of 0.1 μA/cm2 and a low threshold field of 6.2 V/μm at the current density of 1 mA/cm2. So this approach must have a potential application of fabricating micropatterned oxide thin films used in FE-based flat panel displays.  相似文献   

4.
An effective, low cost and catalyst-free solution-phase approach was demonstrated for achieving a tailored length and controlled surface-to-volume ratio of aligned ZnO nanowire (NW) arrays. By a slight variation of the solution concentration and growth time, significant changes in length and surface-to-volume ratio of the obtained ZnO NW arrays have been controlled, respectively. The morphology and microstructure of the synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Also the growth mechanism was discussed. For the study of the piezoelectric property of aligned ZnO NW arrays, some measuring models of nanogenerators (NGs) were fabricated with two pieces of grown ZnO NW array structures stacking together and penetrating into each other. One of the pieces was coated with Au film as the conductive nanotip (NTP) array. The NG was driven by an ultrasonic wave. The piezoelectric output current was gained and characteristic curves have been illustrated for different measuring results. The curves show that increasing the length and surface-to-volume ratios of ZnO NW arrays can enhance the output power of the NGs, respectively. It can be seen that the NGs fabricated with size-controlled ZnO NW arrays provide a feasible technology for building high-power output or power-controlled NGs for applications where a smaller size or appointed power output NGs are required. However, no relationship was found between the piezoelectric current output and the driving frequency of ultrasonic waves from 10 to 50 kHz.  相似文献   

5.
张金玲  吕英华  喇东升  廖蕾  白雪冬 《物理学报》2012,61(12):128503-128503
本文采用热化学气相沉积方法制备氧化锌纳米线阵列, 研究氧化锌纳米线阵列在紫外光辐照下的场电子发射特性. 实验结果表明, 在紫外光辐照下, 氧化锌纳米线场发射开启电压降低, 发射电流明显增大. 机理分析认为, 氧化锌纳米线紫外光增强的场发射源自场电子发射与半导体耦合作用, 紫外光激发价带电子跃迁到导带和缺陷能级使发射电子数量增加, 同时, 光生电子发射降低了发射材料表面的有效功函数, 从而显著增强场电子发射性能. 氧化锌纳米线具有紫外光耦合增强场电子发射特性, 在光传感、冷阴极平板显示和场发射电子源等方面具有潜在的应用价值.  相似文献   

6.
Surface structure, composition, and some field-electron emission properties are examined for thermally annealed titanium carbide emitters. As a result of high temperature heating, low-index planes of {100} and {111} become facetted and are observed as dark areas in field-electron emission patterns. Electrons are emitted predominantly from the {110} planes. The surface composition becomes enriched with carbon when the carbon deficient titanium carbide, TiC0.71, is heated at high temperatures in vacuum better than 10?7 Pa. The topmost (110) layer consists of both Ti and C atoms. The instability in the electron emission current of titanium carbide is considered to be due to the local work function change caused by an interaction between vacuum residual gases and chemically active titanium atoms on the emitter surface.  相似文献   

7.
《Physics letters. A》2020,384(26):126708
Ag2S quantum dots-sensitized ZnO/SnO2 core-shell nanowire arrays were successfully synthesized layer by layer through hydrothermal growth, atomic layer deposition, and successive ionic layer adsorption and reaction process. By introducing the two-layer semiconductors, the bandgap of ZnO component in the arrays was slightly modulated, while the light absorption was obviously improved with an absorptivity higher than 95% in visible and ultraviolet range. In contrast to the ZnO NW arrays, the photocurrent response of the ZnO/SnO2/Ag2S NW arrays for the visible light was improved from 0.42 μA to 22.5 μA, and the photodegradation efficiency of methylene blue was increased from 45.24% to 71.61%, and 42.61% to 57.58%, respectively in visible light and ultraviolet light. Band structure analysis indicated that the coating layer brought different staggered gaps and suitable band alignment for efficient photocatalytic performance, which could be extended to design heterogeneous semiconductor nanomaterials for their potential applications.  相似文献   

8.
Nanocrystalline ZnO thin films have been deposited on rhenium and tungsten pointed and flat substrates by pulsed laser deposition method. An emission current of 1 nA with an onset voltage of 120 V was observed repeatedly and maximum current density ∼1.3 A/cm2 and 9.3 mA/cm2 has been drawn from ZnO/Re and ZnO/W pointed emitters at an applied voltage of 12.8 and 14 kV, respectively. In case of planar emitters (ZnO deposited on flat substrates), the onset field required to draw 1 nA emission current is observed to be 0.87 and 1.2 V/μm for ZnO/Re and ZnO/W planar emitters, respectively. The Fowler–Nordheim plots of both the emitters show nonlinear behaviour, typical for a semiconducting field emitter. The field enhancement factor β is estimated to be ∼2.15×105 cm−1 and 2.16×105 cm−1 for pointed and 3.2×104 and 1.74×104 for planar ZnO/Re and ZnO/W emitters, respectively. The high value of β factor suggests that the emission is from the nanometric features of the emitter surface. The emission current–time plots exhibit good stability of emission current over a period of more than three hours. The post field emission surface morphology studies show no significant deterioration of the emitter surface indicating that the ZnO thin film has a very strong adherence to both the substrates and exhibits a remarkable structural stability against high-field-induced mechanical stresses and ion bombardment. The results reveal that PLD offers unprecedented advantages in fabricating the ZnO field emitters for practical applications in field-emission-based electron sources.  相似文献   

9.
Micropatterned ZnO was synthesized by an electroless deposition process using Au stripes as catalytic surfaces. The Au‐patterned electrodes were prepared on SiO2/Si wafers using photolithography. The site‐selective deposition of patterned ZnO hexagonal rod arrays is confirmed by scanning electron microscopy. The ZnO micropatterned surface revealed a conversion of wettability from hydrophilic to superhydrophobic depending on the deposition reaction param‐ eters. The electrical measurements carried out at room temperature before and after exposure to ammonia vapors of the patterned ZnO arrays show a resistance variation with exposure time. Highly reproducible, easy scalable and low‐cost, photolithography and electroless deposition techniques could provide a facile approach to fabricate functionalized micropatterns, for a wide range of applications. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Large-scale amorphous wire-like ZnO nanostructures were prepared by ultrasonic spray pyrolysis Zn(CO)5 without involvement of any template or patterned catalyst. The as-obtained amorphous ZnO nanowires were characterized using scanning/transmission electron microscopy, X-ray diffraction/photoelectron spectroscopy, energy-dispersed X-ray spectrometry, selected area electronic diffraction, and high-resolution transmission electron microscopy. The results reveal the as-made noncrystalline samples are about 30–60 nm in diameter and several tens of microns in length and the growth mechanism is tentatively proposed as the self-assembly soft template mechanism. The photoluminescence spectra in all of the as-studied specimens exhibit one wide visible emission peak in about 508 nm. The corresponding PL intensity greatly increased with an annealing temperature, which has an application for a high efficiency vacuum fluorescent displays and a low-voltage phosphor.  相似文献   

11.
We present a new method of synthesizing ZnO/TiO2 core–shell nanowire (NW) arrays for the fabrication of dye-sensitized solar cells (DSSCs). Vertically aligned ZnO NW arrays were obtained on Si substrates, and modified by a TiO2 shell in order to solve the recombination problems via a cost-effective spin-coating method. The structure of the ZnO/TiO2 composite NW arrays was characterized. The experimental results indicate that the TiO2 shell enhances the performance of the DSSCs, through improving the stability of the ZnO NWs and decreasing the recombination of photogenerated electrons on the NW surface. The highest overall conversion efficiency of the cell reaches about 3.0 %.  相似文献   

12.
An improved sol-gel method was used to prepare ZnO nanoparticles. EL results showed that slowing the addition of LiOH solution and heating in vacuum to obtain gel precipitation made the final ZnO samples’ emission peak blue shift to 520 nm. Simultaneously, the peak value of the sample processed with no templates was enhanced 4.68 times and that of the sample processed with ODA was enhanced 0.71 times. Two copolymers Pluronic P123 (P123) and Pluronic F-127 (F-127) were adopted respectively as template reagents. The obtained mesoporous ZnO precursors exhibited a surface area of 69.21 m2/g and 103.57 m2/g and an average pore size of 6.61 nm and 5.70 nm, respectively. After calcining in a muffle furnace in air, the obtained ZnO nanocrystalline samples from these precursors revealed stronger green emission than the samples dealt with ODA. Compared to the magnification multiple of 0.89 times of the sample processed with ODA, the peak intensity of the sample processed with P123 was 2.03 times higher than that of the sample processed with no template reagents, and the intensity of the sample processed with F-127 was 3.3 times higher. This may be due to the larger surface area of samples from the longer molecule chains of the two template reagents.  相似文献   

13.
The growth of ZnO nanorod arrays via a template-free sol-gel process was investigated. The nanorod is single-crystalline wurtzite structure with [0 0 0 1] growth direction determined by the transmission electron microscope. The aligned ZnO arrays were obtained directly on the glass substrates by adjusting the temperatures and the withdrawal speeds, without seed-layer or template assistant. A thicker oriented ZnO nanorod arrays was obtained at proper experimental conditions by adding dip-coating layers. Room temperature photoluminescence spectrum exhibits an intensive UV emission with a weak broad green emission as well as a blue double-peak emission located at 451 and 468 nm, respectively. Further investigation results show that the difference in the alignment of nanorods ascribes to the different orientations of the nanoparticles-packed film formed prior to nanorods on the substrate. Well ordered ZnO nanorods are formed from this film with good c-axis orientation. Our study is expected to pave a way for direct growth of oriented nanorods by low-cost solution approaches.  相似文献   

14.
Vertically aligned ZnO nanorod arrays with different aspect ratios were synthesized by hybrid wet chemical route. Modulation of the field emission properties (FE) with aspect ratio of ZnO nanorods was examined. With the increase in the aspect ratio, the emission current density increases from 0.02 to 8 μA/cm2 at 7.0 V/μm. Turn-on voltage was seen to decrease from 9.6 to 7 V/μm at a current density of 10 μA/cm2 with the increase in aspect ratio in the ZnO films. The interrelation between the FE characteristics (emission thresholds, current density, surface uniformity, etc.) and microstructure of the ZnO nanostructure obtained from scanning electron microscopy (SEM) and atomic force microscopy (AFM) was discussed. Quality of the ZnO nanorods was also examined by using Raman spectroscopy and Fourier transformed infrared spectroscopy (FTIR). It was found that the observed enhancements of FE characteristics could mainly be attributed to the increase in aspect ratio and associated number density of ZnO nanorods.  相似文献   

15.
Nanotip arrays of amorphous carbon with embedded hexagonal diamond nanoparticles were prepared at room temperature for use as excellent field emitters by a unique combination of anodic aluminum oxide (AAO) template and filtered cathodic arc plasma (FCAP) technology. In order to avoid nanopore array formation on the AAO surface, an effective multi-step treatment employing anodization and pore-widening processes alternately was adopted. The nanotips were about 100 nm in width at the bottom and 150 nm in height with density up to 1010 cm−2. Transmission electron microscopy investigation indicates that many nanoparticles with diameters of about 10 nm were embedded in the amorphous carbon matrix, which was proved to be hexagonal diamond phase by Raman spectrum and selected-area electron diffraction. There is no previous literature report on the field emission properties of hexagonal diamond and its preparation at room temperature under high-vacuum condition. The nanotip arrays with hexagonal diamond phase exhibit a low turn-on field of 0.5 V/μm and a threshold field of 3.5 V/μm at 10 mA/cm2. It is believed that the existence of hexagonal diamond phase has improved the field emission properties.  相似文献   

16.
《Current Applied Physics》2014,14(9):1228-1233
ZnO thin films and nanowires (NWs) were precisely treated by focused electron-beam (E-beam) irradiation with a line width between 200 nm and 3 μm. For both ZnO films and NWs, an increased green emission was clearly observed for the E-beam-treated parts. Using a high-resolution laser confocal microscope, the photoluminescence intensities for E-beam-treated ZnO structures increased with increasing dose 1.0 × 1017–1.0 × 1018 electrons/cm2. The resistivity of a single ZnO NW increased from 56 to 1800 Ω cm after the E-beam treatment. From the results for the annealed ZnO thin films, we analyzed that the variations in PL and resistivity were due to the formation of vacancies upon focused E-beam irradiation.  相似文献   

17.
A simple and reliable method has been developed for synthesizing finely patterned tin dioxide (SnO2) nanostructure arrays on silicon substrates. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO2 nanostructures arrays, a unit area is of ∼500 μm × 200 μm, were synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized SnO2 nanostructures were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of formation of SnO2 nanostructures was also discussed. The measurement of field emission (FE) revealed that the as-synthesized SnO2 nanorods, nanowires and nanoparticles arrays have a lower turn-on field of 2.6, 3.2 and 3.9 V/μm, respectively, at the current density of 0.1 μA/cm2. This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays, sensor arrays and so on.  相似文献   

18.
In this research, a unique strategy was developed to enhance the output performance of 2D ZnO nanosheets based piezoelectric nanogenerator (PENG). The Br doped 2D ZnO nanosheets were fabricated by facile hydrothermal method on nanoporous anodic aluminum oxide (AAO) template. Along with structural and optical characterization of Br doped 2D ZnO nanosheets, the electrical output performance of Br doped 2D ZnO PENG was demonstrated under external mechanical force. The corresponding output voltage of Br doped 2D ZnO nanosheets PENG reached to 8.82 V at 6HZ, which is 3 times higher than undoped ZnO nanosheets PENG. The output power density of Br doped 2D ZnO nanosheets PENG reached to 38.8962μWcm−2 at an external load resistanec of about 2 MΩ. The Br doping in ZnO nanosheets significantly increased the sensitivity of PENG for pressure sensing and the flexibility of PENG contribute in the application of position sensing.  相似文献   

19.
Patterned gallium nitride nanowires and nanodots have been grown on n-Si (100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/μm to achieve a current density of 0.01 mA/cm2 and an enhanced field emission current density as high as 0.156 mA/cm2 at an applied field of 11 V/μm. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties.  相似文献   

20.
In this article, we describe a new method to prepare a ZnO and conjugated polymer nanocomposite and its application in bulk-heterojunction solar cells. The composite was composed of zinc oxide (ZnO) and poly(phenylene vinylene)/poly(vinyl alcohol) (PPV/PVA). For the preparation, the composite was prepared first through the complex reaction between Zn2+ ion and –OH of the PVA–PPV precursor by simply mixing zinc salts and a PVA–PPV precursor aqueous solution at 70 °C. By addition of a concentrated aqueous ammonia into the system, highly regular Zn(OH)2 nanodots were formed and dispersed in the PVA/PPV precusor mixed solution. The PVA/PPV precursor can well bind Zn2+ ion through complex interaction, so act as a template to direct the distribution of ZnO in the process. The nanocomposite films were finally obtained by solution casting and subsequently treated by heating samples at 160 °C for 6 h. TEM observations showed that ZnO nanodots uniformly dispersed in PVA–PPV mixtures. The resulting nanocomposite films possess a large interfacial area between the electron donor and acceptor of the bulk-heterojunction. Improved charge seperation and collection are evidenced by the large photoluminescence intensity difference between pure PPV and composites films, which result in the increase in both open circuit voltage and short circuit current of the hybrid solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号