首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
We reported the effects on the electrical behavior of amorphous indium–gallium–zinc oxide (a-IGZO) thin film transistors (TFTs) after introducing various positions and sizes of Au nanoparticles (NPs) in the channel layer. These TFTs showed an off-current increase and threshold voltage (Vth) shift compared to conventional a-IGZO TFTs. The effects of Au NPs are explained to form the carrier conduction path which causes the current leakage in the channel layer, and act as either electron injection sites or trap sites. Therefore, this study demonstrates that the optimized control of size and position of Au NPs in the channel layer is crucial for its application in the electrical stability improvement and Vth control of a-IGZO TFTs.  相似文献   

2.
《Current Applied Physics》2019,19(12):1383-1390
To investigate the effect of indium-tin-oxide (ITO) electrode on the Al-doped HfO2 (Al:HfO2) ferroelectric thin films, we fabricated and characterized the ITO/Al:HfO2/ITO and ITO/Al:HfO2/TiN capacitors by changing the annealing conditions. The ferroelectric remnant polarization (2Pr) was obtained to be 13.25 μC/cm2 for the ITO/Al:HfO2/TiN capacitors with the post-deposition annealing, which was termed T1. The 2Pr decreased after the post-metallization annealing due to the interface degradation between the Al:HfO2 and ITO electrode. Alternatively, the switching time and activation field of the T1 for the ferroelectric polarization switching were 1.25 μs and 1.15 MV/cm. These parameters were sensitively influenced by the interfacial dead layer formation and the amounts of ferroelectric orthorhombic phase. Furthermore, the fatigue endurance of the T1 were improved by preventing the crowding of oxygen vacancies at interfaces between the Al:HfO2 and top electrodes, in which the polarization values did not experience marked variations even after the fatigue cycles of 108.  相似文献   

3.
《Current Applied Physics》2014,14(7):932-935
Thin film transistors (TFTs) with indium–zinc tin-oxide (IZTO) dual-channel layers were fabricated on heavily-doped p-type Si substrates by using a tilted dual-target radio-frequency magnetron sputtering system. The number of oxygen vacancies in the IZTO channel layer decreased with increasing oxygen partial pressure, resulting in a decrease in the conductivity. The threshold voltage (Vth) shifted toward positive gate-source voltage with increasing oxygen partial pressure for the growth of the IZTO layer because of a decrease in the carrier concentration. The Vth, the mobility, the on/off-current ratio, and the subthreshold swing of the dual-channel IZTO TFTs were 3.5 V, 7.1 cm2/V s, 1.3 V/decade, and 8.2 × 106, respectively, which was enhanced by utilizing dual-channel layers consisting of a top channel deposited at a high oxygen partial pressure and a bottom channel deposited at a low oxygen partial pressure.  相似文献   

4.
In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain(S/D) series resistance in operating amorphous indium–gallium–zinc–oxide(a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metalsemiconductor junction.  相似文献   

5.
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol–gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm−3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.  相似文献   

6.
7.
8.
We prepared nickel oxide (NiO) thin films with p-type Cu dopants (5 at%) using a sol–gel solution process and investigated their structural, optical, and electrical characteristics by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmittance and current–voltage (IV) characteristics. The crystallinity of the NiO films improved with the addition of Cu dopants, and the grain size increased from 38 nm (non-doped) to 50 nm (Cu-doped). The transmission of the Cu-doped NiO film decreased slightly in the visible wavelength region, and the absorption edge of the film red-shifted with the addition of the Cu dopant. Therefore, the width of the optical band gap of the Cu-doped NiO film decreased as compared to that of the non-doped NiO film. The resistivity of the Cu-doped NiO film was 23 Ω m, which was significantly less than that of the non-doped NiO film (320 Ω m). Thus, the case of Cu dopants on NiO films could be a plausible method for controlling the properties of the films.  相似文献   

9.
《Current Applied Physics》2015,15(4):441-445
In this study, the resistive switching performance of amorphous indium–gallium–zinc oxide (a-IGZO) resistive switching random-access memory (ReRAM) was improved by inserting a thin silicon oxide layer between silver (Ag) top electrode and a-IGZO resistive switching layer. Compared with the single a-IGZO layer structure, the SiO2/a-IGZO bi-layer structure exhibits the higher On/Off resistance ratio larger than 103, and the lower operation power using a smaller SET compliance current. In addition, good endurance and excellent retention characteristics were achieved. Furthermore, multilevel resistance states are obtained through adjusting SET compliance current and RESET stop voltage, which shows a promise for high-performance nonvolatile multilevel memory application.  相似文献   

10.
Perovskite solar cells have been studied extensively in the area of perovskite solar cells because they have a comparatively free hysteresis. Through fabrication of a perovskite solar cell based on a vanadium oxide buffer, this study clarified the mechanism of electron and hole transport in the laminated layer upon irradiation with light. The power conversion efficiency (PCE) of the Vanadium (Ⅳ) oxide (VO2) sputtering process device was approximately 13% and with the spin-coating process was 8.5%. To investigate the physicochemical origin of such PCE differences depending on the process type, comprehensive band alignment and band structure analyses of the actual cell stacks were performed using X-ray photoelectron spectroscopy depth measurements. Accordingly, it was found that the inconsistent valence band offset between the perovskite absorption layer and V2O5 layer as a function of the VO2 process type caused a difference in the hole transport, resulting in the difference in the efficiency.  相似文献   

11.
The instabilities of indium–zinc oxide thin film transistors under bias and/or illumination stress are studied in this paper. Firstly, illumination experiments are performed, which indicates the variations of current–voltage characteristics and electrical parameters(such as threshold voltage and sub-threshold swing) are dominated by the stress-induced ionized oxygen vacancies and acceptor-like states. The dependence of degradation on light wavelength is also investigated. More negative shift of threshold voltage and greater sub-threshold swing are observed with the decrease of light wavelength.Subsequently, a negative bias illumination stress experiment is carried out. The degradation of the device is aggravated due to the decrease of recombination effects between ionized oxygen vacancies and free carriers. Moreover, the contributions of ionized oxygen vacancies and acceptor-like states are separated by using the mid-gap method. In addition, ionized oxygen vacancies are partially recombined at room temperature and fully recombined at high temperature. Finally, low-frequency noise is measured before and after negative bias illumination stress. Experimental results show few variations of the oxide trapped charges are generated during stress, which is consistent with the proposed mechanism.  相似文献   

12.
13.
Chemical co-precipitation method was used to synthesize nano-structured α-Fe2O3-CeO2 composite by calcination of the goethite–cerium hydroxide precursor. It was observed that the precursor contained goethite matrix doped with cerium. Calcination of the precursor at 400°C showed the formation of nanosize hematite. Mössbauer spectra show the presence of a paramagnetic component in the precursor but not in the samples calcined at 400°C to 800°C temperatures. Our study shows that Ce precipitated as CeO2 and stuck on the surface of hematite particles. The precipitation of Ce as CeO2 is independent of the concentration of Ce in the Ce–Fe–O composite.  相似文献   

14.
Preferentially (105)-oriented SrxBi2+yTa2O9 (SBT) thin films on SiN/SiO2/p-Si(100) prepared by the pulsed laser deposition (PLD) method at a temperature as low as 400 °C, which is the lowest process temperature for growing SBT ferroelectric thin films on a silicon nitride film. Excess Bi promotes crystallization of the SBT film. A metal-ferroelectric-nitride-oxide-semiconductor (MFNOS) structure, which is very important in ferroelectric gate memory FET, has been fabricated by depositing the SBT film on silicon nitride-oxide-silicon. The MFNOS structures show capacitance-voltage (C-V) hysteresis corresponding to ferroelectric hysteresis. A memory window of the C-V hysteresis is improved, to be as high as 3.5 V in the SBT(400 nm)/SiNx(7 nm)/SiO2(18 nm)/Si compared with the window of 2.7 V in the SBT(400 nm)/SiO2(27 nm)/Si (MFOS), where the thicknesses of their insulator layers are nearly the same. Little degradation is induced in the C-V characteristics of the SiNx/SiO2/p-Si structure when depositing the SBT film by PLD at low temperature. It is also found that the SiNx layer acts as a diffusion barrier against component atoms in the SBT film during its deposition. Finally, the MFNOS structure prepared at the low temperature is very promising for a next-generation ferroelectric gate memory FET.  相似文献   

15.
(Fe50Pt50)100−x-(SiO2)x films (x=0–30 vol%) were grown on a textured Pt(0 0 1)/CrRu(0 0 2) bilayer at 420 °C using glass substrates. FePt(0 0 1) preferred orientation was obtained in the films. Interconnected microstructure with an average grain size of about 30 nm is observed in the binary FePt film. As SiO2 is incorporated, it precipitates as particles are dispersed at FePt grain boundaries. When the content of SiO2 is increased to 13 vol%, columnar FePt with (0 0 1) texture separated by SiO2 is attained. The FePt columns have a length/radius ratio of 2:1. Additionally, the mean grain size is reduced to about 13 nm. The development of this well-isolated columnar structure leads to an enhancement in coercivity by about 44% from 210 to 315 kA/m. As the SiO2 content exceeds 20 vol%, a significant ordering reduction is found accompanied by a transformation of preferred orientation from (0 0 1) to (2 0 0) and the columnar structure disappears, resulting in a drastic degradation in magnetism. The results of our study suggest that isolated columnar, grain refined, (0 0 1)-textured FePt film can be achieved via the fine control of SiO2 content. This may provide useful information for the design of FePt perpendicular recording media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号