共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Carlo Carlini Marco Di Girolamo Alessandro Macinai Mario Marchionna Marilena Noviello Anna Maria Raspolli Galletti Glauco Sbrana 《Journal of molecular catalysis. A, Chemical》2003,200(1-2):137-146
The synthesis of isobutanol via the Guerbet condensation between methanol and ethanol was studied by using sodium methoxide (MeONa) as soluble basic component and copper-based catalysts as heterogeneous dehydrogenating/hydrogenating metal species. The effect of the nature of the catalyst and the relative amount of its individual components with respect to the reacting alcohols as well as of temperature on productivity and selectivity of the process was investigated. The collected data indicated that the copper chromite/MeONa was more active than Cu-Raney/MeONa system. The reaction was shown to proceed with the formation only of n-propanol and isobutanol. Ethanol conversion up to 61% with selectivity to isobutanol up to 98.4% was obtained. The same catalytic systems were also employed in the reaction of the methanol/ethanol/n-propanol ternary mixture. Again copper chromite/MeONa resulted more active than the Cu-Raney/MeONa system. Finally, experiments were carried out on methanol/n-propanol mixtures in the presence of the copper chromite/MeONa catalytic system by recycling both the recovered solid copper component and the liquid reaction mixture for evidencing eventual copper leaching by MeONa. On the basis of the obtained results it was concluded that in the Guerbet reaction copper chromite works as heterogeneous catalyst. 相似文献
3.
Lin MS Chen LY Tsai HT Wang SS Chang Y Higuchi A Chen WY 《Langmuir : the ACS journal of surfaces and colloids》2008,24(11):5802-5808
Extracellular beta-amyloid (A beta) deposit is considered as one of the primary factors that induce Alzheimer's disease (AD). The effects of various environmental factors, including temperature, ionic strength, and pH, on A beta (1-40) aggregation mechanisms were investigated in this study by spectrometry, isothermal titration calorimetry (ITC), and hydrophobic fluorescence assay. In the aggregation process, the secondary structure of A beta (1-40) transforms to the beta-sheet conformation, which could be described as a two-state model. As the temperature and ionic strength increase, the conformation of A beta converts to the beta-sheet structure with an increased rate. Results of circular dichroism monitoring demonstrate that the rate constant of nucleation is smaller than that of elongation, and the nucleation is the rate-determining step during the overall A beta aggregation. The beta-sheet structure was stabilized by hydrophobic forces, as revealed by the ITC measurements. The different structural aggregates and forming pathways could be identified and discriminated at high and low ionic strengths, resulting in distinctive fibril conformations. Furthermore, the thermodynamic analysis shows that hydrophobic interaction is the major driving force in the nucleation step. Our study provides an insight into the discriminative mechanisms of beta-amyloid aggregation via kinetics and thermodynamics, especially the first reported thermodynamics information obtained by ITC. 相似文献
4.
5.
A Mukherjee TK Sen PK Ghorai PP Samuel C Schulzke SK Mandal 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(34):10530-10545
Herein, we report the synthesis and characterization of two organozinc complexes that contain symmetrical phenalenyl (PLY)-based N,N-ligands. The reactions of phenalenyl-based ligands with ZnMe(2) led to the formation of organozinc complexes [N(Me),N(Me)-PLY]ZnMe (1) and [N(iPr),N(iPr)-PLY]ZnMe (2) under the evolution of methane. Both complexes (1 and 2) were characterized by NMR spectroscopy and elemental analysis. The solid-state structures of complexes 1 and 2 were determined by single-crystal X-ray crystallography. Complexes 1 and 2 were used as catalysts for the intramolecular hydroamination of unactivated primary and secondary aminoalkenes. A combined approach of NMR spectroscopy and DFT calculations was utilized to obtain better insight into the mechanistic features of the zinc-catalyzed hydroamination reactions. The progress of the catalysis for primary and secondary aminoalkene substrates with catalyst 2 was investigated by detailed kinetic studies, including kinetic isotope effect measurements. These results suggested pseudo-first-order kinetics for both primary and secondary aminoalkene activation processes. Eyring and Arrhenius analyses for the cyclization of a model secondary aminoalkene substrate afforded ΔH(≠) =11.3?kcal?mol(-1) , ΔS(≠) =-35.75?cal?K(-1) mol(-1) , and E(a) =11.68?kcal?mol(-1) . Complex 2 exhibited much-higher catalytic activity than complex 1 under identical reaction conditions. The in situ NMR experiments supported the formation of a catalytically active zinc cation and the DFT calculations showed that more active catalyst 2 generated a more stable cation. The stability of the catalytically active zinc cation was further supported by an in situ recycling procedure, thereby confirming the retention of catalytic activity of compound 2 for successive catalytic cycles. The DFT calculations showed that the preferred pathway for the zinc-catalyzed hydroamination reactions is alkene activation rather than the alternative amine-activation pathway. A detailed investigation with DFT methods emphasized that the remarkably higher catalytic efficiency of catalyst 2 originated from its superior stability and the facile formation of its cation compared to that derived from catalyst 1. 相似文献
6.
We prepared thin molecular films of ethanol and 2-methylpropan-2-ol on Ru(001) substrates at temperature of 100-150 K and examined their reactivity toward HBr. The reaction intermediates and products formed at the surfaces were unambiguously identified by the techniques of Cs(+) reactive ion scattering (RIS) and low-energy sputtering. The reaction on the ethanol surface produced protonated ethanol, which is stabilized on the surface and does not proceed to further reactions. On the 2-methylpropan-2-ol surface, protonated alcohol [(CH(3))(3)COH(2) (+)] and carbocation [(CH(3))(3)C(+)] were formed with the respective yield of 20 and 78 %. Alkyl bromides, which are the final products of the corresponding reactions in liquid solvents, have extremely small yields on these surfaces (< 0.3 % for ethyl bromide and 2 % for tert-butyl bromide). The results indicate that the reactions on frozen films are characterized by kinetic control, stabilization of ionic intermediates (protonated alcohols and tert-butyl cation), and effective blocking of the charge recombination steps in S(N)1 and S(N)2 paths. The implication of these findings for the molecular evolution process in interstellar medium is also discussed. 相似文献
7.
8.
An outline of equations allowing calculation, from calorimetric data, of both thermodynamic and kinetic parameters for reactions which proceed to completion is given. In addition equilibrium constants are calculable for reactions which proceed to an equilibrium position. Advantages of the methods for solid state kinetic and stability studies are briefly discussed. 相似文献
9.
随着生物发酵技术的进步和化学转化方法的发展,全球乙醇产量迅速增加.然而,乙醇存在能量密度低、吸水、对发动机腐蚀性高等缺点,其在汽油中的添加量有限,一般低于15%,这严重限制了乙醇产业的发展.与此相比,丁醇具有更高的能量密度和汽油添加量,是一种更加理想的油品添加剂.因此,乙醇催化转化为丁醇是连接高乙醇产量和优质丁醇需求的桥梁,具有重要的学术和应用价值.在过去的几十年里,均相催化剂、复合氧化物催化剂、羟基磷灰石及金属促进的氧化物催化剂迅速发展,但是仍存在乙醇转化率低、丁醇选择性差和催化剂不能循环等问题.乙醇催化转化为丁醇是一个Guerbet反应,乙醇首先脱氢生成乙醛,乙醛通过缩合、脱水生成巴豆醛,巴豆醛通过加氢得到丁醇.反应中主要涉及氢转移活性位和羟醛缩合活性位.因此,本文中我们根据催化反应机理,筛选了不同金属氧化物和碱催化剂体系,分别用于乙醇脱氢、巴豆醛加氢和乙醛缩合、脱水反应.结果发现,在FeNiOx和LiOH催化体系中,乙醇转化率和丁醇选择性最好.通过优化反应温度、反应时间、金属氧化物和碱量等条件,在493 K反应釜中反应24 h,得到28%的乙醇转化率、71%的丁醇选择性和超过90%的C4-C8高碳醇选择性,达到了部分均相贵金属催化剂上的反应结果.在FeNiOx和LiOH催化体系中,FeNiOx具有较强的磁性,便于磁性分离,循环八次后仍具有较高的催化活性,展示出优异的稳定性.LiOH可以通过蒸馏分离,循环三次没有明显失活,但有少量Li2CO3生成,其可以通过焙烧的方式恢复.通过穆斯堡尔谱、氢气吸附、XPS等表征和条件实验发现,FeNiOx中存在金属态的镍、铁和不同氧化态的铁物种,其能促进乙醇的脱氢和后续巴豆醛的加氢,起到氢转移的作用.LiOH具有合适的酸碱性,能够促进乙醛的羟醛缩合,并加速乙醇转化.在两者协同作用下,乙醇转化率和丁醇选择性都有显著提高.这一研究策略对此反应中新型催化剂的开发和反应机理的认识都具有重要的推动作用. 相似文献
10.
Journal of Thermal Analysis and Calorimetry - This paper presents thermodynamic results of Ag–Sn alloys mixing at 1150 °C. The need for binary data on mixing enthalpy ΔH... 相似文献
11.
《Physics and Chemistry of Liquids》2012,50(5):467-479
Water is the most widely used solvent in the chemical and pharmaceutical industry, since it is the most physiological and best tolerated excipient. However, in some cases water cannot be used as a solvent because the active substance or solute is insoluble or only slightly soluble in water. For this and other reasons, nonwater solvents may be used possessing the common characteristic of being soluble or mixable in water; as a result, such solvents can be used to prepare binary or tertiary mixtures, etc., with different purposes such as increasing water solubility, or modifying the viscosity or absorption of the dissolved substance, for example. Ethanol, along with other alcohols either alone or in water–alcohol solutions involving different proportions, are widely used in the pharmaceutical industry as excipients in different formulations, or as solvents. Ethanol–water systems are characterized by the so-called volume contraction phenomenon, which is in turn accompanied by a considerable increase in the viscosity of the system. This is attributed to the increase in size of the molecular package secondary to solvation or the formation of hydrogen bonds between the alcohol and water – a phenomenon referred to as viscous synergy. The formation of hydrogen bonds between alcohol and water modifies with temperature, thus leading to variations in the viscosity of the system. The present study investigates the viscous synergy of systems comprising pure alcohol in water at different concentrations, determining the proportion of alcohol–water at which maximum viscous synergy occurs, along with the correlation between the viscosity increments and density. The ratio between the maximum viscosity reached by the mixture and the viscosity of pure alcohol is expressed by the enhancement index defined as: E η ?=?ηmax/η o . Likewise, and since the viscosity of these systems varies with temperature, a thermodynamic study has been made to determine the activation energy of the ethanol–water mixture as a function of concentration. 相似文献
12.
Akçay M 《Journal of colloid and interface science》2004,280(2):1-304
The characterization of tetraethylammonium bentonite and the adsorption of p-chlorophenol (p-CP) onto organophilic bentonite (tetraethylammonium bentonite) was studied as a function of the solution concentration and temperature. The observed adsorption rates were found to fit first-order kinetics. The rate constants were calculated for temperatures ranging between 15.0 and 35.0 degrees C at constant concentration. The adsorption energy E and adsorption capacity q(m) for the phenolic compound adsorbing on organophilic bentonite were estimated using the Dubinin-Radushkevic equation. Thermodynamic parameters (Deltag(a), Deltah(a), Deltas(a)) were calculated by a new approximation from the isotherms of p-CP adsorption on organophilic bentonite. These isotherms were modeled according to Freundlich and Dubinin-Radushkevic adsorption isotherms. The amount of adsorption of p-chlorophenol on organophilic bentonite was found to be dependent on the relative energies of adsorbent-adsorbate, adsorbate-solvent, and adsorbate-adsorbate interactions. 相似文献
13.
The mechanism of the palladium-catalyzed cross-coupling reaction of (E)-dimethyl-(1-heptenyl)silanol ((E)-1) and of (E)-diisopropyl-(1-heptenyl)silanol ((E)-2) with 2-iodothiophene has been investigated through spectroscopic and kinetic analysis. A common intermediate in cross-coupling reactions of several types of organosilicon precursors has been identified as a hydrogen-bonded complex between tetrabutylammonium fluoride (TBAF) and a silanol. The order in each component has been determined by plotting the initial rates of the cross-coupling reaction at varying concentrations. These data provide a mechanistic picture that involves a fast and irreversible oxidative insertion of palladium into the aryl iodide and a subsequent turnover-limiting transmetalation step achieved through a fluoride-activated disiloxane derived from the particular silanol employed. The inverse order dependence of TBAF at high concentration is consistent with a pathway that proceeds through a hydrogen-bonded complex which is the lowest energy silicon species in solution. 相似文献
14.
CuMgAlOx复合氧化物催化甲醇乙醇Guerbet反应:M/Al比的影响 《燃料化学学报》2018,46(12):1472-1481
以类水滑石为前驱体,通过调控M~(2+)/Al~(3+)比制备了系列具有不同表面性质的MgAlO_x(MA)和CuMgAlO_x(CMA)催化剂,并分别应用于甲醛乙醛缩合反应(甲醇乙醇Guerbet反应的第二步反应)和甲醇乙醇Guerbet反应。采用NH_3/CO_2-TPD、XPS、H_2-TPR和H_2-TPD技术对催化剂表面酸碱性以及铜物种的性质进行了表征。结果表明,甲醇乙醇Guerbet反应性能与催化剂表面Cu~0比表面积和中强碱数目有关,提高Cu~0比表面积有利于甲醇乙醇脱氢生成甲醛和乙醛,增强中强碱数目能促进甲醛乙醛缩合反应。 相似文献
15.
《印度化学会志》2023,100(2):100876
The direct ethanol fuel cell is a green and renewable power source alternative to fossil fuels and produces less emissions compared to a combustion engine. Ethanol can be generated in great quantity from renewable resources like biomass through a fermentation process. Bio-generated ethanol is thus attractive fuel since growing crops for biofuels absorbs much of the carbon dioxide emitted into the atmosphere from the oxidation of ethanol. The platinum and palladium were co-deposited on graphite substrate by the galvanostatic technique and employed as anode catalyst for ethanol electrooxidation. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy. The cyclic voltammetry (CV) were used for the estimation of the electrochemically active surface area (ECSA) of the synthesized catalysts in alkaline medium. The CVs for ethanol oxidation revealed superior catalytic activity of Pt–Pd/C compared to Pd/C and Pt/C. The effect of OH? on ethanol oxidation at Pt–Pd/C catalyst was studied using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The Pt–Pd/C catalyst shows good stability and enhanced electrocatalytic activity is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH? adsorption on the surface and palladium ad-atom contribution on the alloyed surface. 相似文献
16.
Molecular dynamics simulations with a combined quantum mechanical and molecular mechanical (QM/MM) potential have been carried out to investigate the squalene-to-hopene carbocation cyclization mechanism in squalene-hopene cyclase (SHC). The present study is based on free energy simulations by constructing the free energy surface for the cyclization steps along the reaction pathway. The picture that emerges for the carbocation cyclization cascade is a delicate balance of thermodynamic and kinetic control that ultimately favors the formation of the final hopanoids carbon skeleton. A key finding is that the five- to six-membered ring expansion process is not a viable reaction pathway for either C- or D-ring formation in the cyclization reaction. The only significant intermediate is the A/B-bicyclic cyclohexyl cation (III), from which two asynchronous concerted reaction pathways lead to, respectively, the 6,6,6,5-tetracyclic carbon skeleton and the 6,6,6,6,5-pentacyclic hopanoids. Experimentally, these two products are observed to have 1% and 99% yields, respectively, in the wild-type enzyme. We conclude that the product distribution in the wild-type enzyme is dictated by kinetic control of these two reaction pathways. 相似文献
17.
18.
Nianwei Yin 《European Polymer Journal》2005,41(6):1357-1372
A general kinetic model of particle formation in an ultrasonically initiated emulsion polymerization system is presented. This model takes into account homogeneous, micelle entry, and monomer droplet nucleation mechanism. The effects of the ultrasound in producing free radical, degrading free radical and influencing the fashion of the nucleation are also considered. Moreover, chain transfer to monomer and termination in the aqueous phase, capture of oligomer radicals by particles, and coagulation of particles are also considered. An analytical solution is obtained for the initial particle stage consideration. This model predicts that, if the desorption of radical from particles can be neglected, the concentration of the total radical in the aqueous phase is directly proportional to the cavitation concentration. Model predictions are in good agreement with experimental data obtained from the literature. 相似文献
19.
G. I. Golodets Yu. I. Pyatnitskii V. V. Goncharuk 《Theoretical and Experimental Chemistry》1970,4(1):31-35
The relation between heats of dissociation leading to the formation of lower oxide phases (q) and heats of dissociation without change in the oxide phase (qS) is analyzed. In the majority of cases qS is close to q; however, in the case of the higher oxides of V, Mo, W, and U, the difference qS-q is large. This leads to the systematic elimination of these oxides from the relationship correlating catalytic activity and q. The possibility is considered of using a kinetic characteristic (for example, reducibility) in evaluating the stability of the bond of the surface oxygen in oxides.The principal limitation to the application of the thermodynamic method of predicting the catalytic activity of substances is formulated. This is the fact that it is useful only for evaluating the relative activity in a series of monotypic catalysts for the same reaction. The transition metals and oxides are established as not being monotypic catalysts for the oxidation of hydrogen. 相似文献
20.
The mechanism of the fluoride-free, palladium-catalyzed cross-coupling reaction of potassium (E)-heptenyldimethylsilanolate, K(+)(E)-1(-), with 2-iodothiophene has been investigated through kinetic analysis. The order of each component was determined by plotting the initial rates of the reaction against concentration. These data provided a mechanistic picture which involves a fast and irreversible oxidative insertion of palladium into the aryl iodide and a subsequent intramolecular transmetalation step from a complex containing a silicon-oxygen-palladium linkage. First-order behavior at low concentrations of silanolate with excess palladium(0) complex supports the formation of this complex as the turnover-limiting step. The change to zeroth-order dependence on silanolate at high concentrations is consistent with the intramolecular transmetalation becoming the turnover-limiting step. 相似文献