首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noble-metal-based catalysts supported on silica (Au/SiO2, Pd/SiO2 and Au–Pd/SiO2) were prepared by the sol–gel method and were evaluated in the steam reforming of ethanol for hydrogen production. The catalysts were characterized by N2 physisorption (BET/BJH methods), X-ray diffraction, temperature programmed reduction analysis, H2 chemisorption, atomic absorption spectrophotometry and Raman spectroscopy. The structural characterization of the Au- and Pd-containing catalysts after calcination showed that the solids are predominantly formed by Au0, Pd0 and PdO species and was observed that the metallic Pd dispersion diminished in the presence of Au0. The results revealed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. The Pd/SiO2 catalyst showed the best performance among the catalysts tested at the highest reaction temperature (600 °C) due to the more effective action of the metallic active phase, which covers a greater area in this sample. At this same reaction temperature, the Au–Pd/SiO2 catalyst showed a significant deactivation, probably due to the lower Pd dispersion presented by this catalyst.  相似文献   

2.
A series of Cr/Al2O3 and Co/Al2O3 catalysts were tested in the selective ammoxidation of ethylene to acetonitrile. Catalysts were prepared either by sol–gel method or by impregnation with chromium or cobalt acetylacetonate salts. Physicochemical properties of catalysts were accomplished by several techniques such as chemical analysis, physisorption of N2, X-ray diffraction (XRD), 27Al MAS NMR, UV–Visible diffuse reflectance (DRS) and Raman spectroscopy and temperature programmed reduction of H2 (H2–TPR). Textural analysis reveals that mesoporous materials with pronounced surface areas were obtained using sol–gel procedure while impregnation of the support produces a moderate decrease of its surface area and pore volume. XRD analysis confirms the presence of highly dispersed metal species which reside essentially on the surface and measure less than 4 nm. Furthermore, 27Al MAS NMR shows that for xerogels, part of metal species occupies sites on/in A12O3 in close vicinity of octahedral 27Al. This, apparently, is not the case for aerogels. For Cr/Al2O3 catalysts, isolated Cr6+, mono and polychromate species were identified using DRS, Raman Spectroscopy and H2–TPR which seem to play a key role in the ammoxidation of ethylene. Furthermore, for cobalt doped catalysts, CoAl2O4 was identified as active phase on the basis of DRS and H2–TPR results. From the supercritical drying, it results generally better catalysts than catalysts calcined by ordinary procedure which leads to inactive agglomerated Co3O4 and CoO–Al2O3 phase.  相似文献   

3.
4.
A type of Nb2O5⋅3H2O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-P g−1. The peak appearing at 1050 cm−1 in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both ΔH° and ΔS° suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. ΔG° values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.  相似文献   

5.
Hydrogen production for fuel cells via on-board steam reforming of methanol is a promising approach. In this study, an ammonium carbonate-assisted mechanochemical procedure has been developed for Cu-based catalyst synthesis for SRM. Catalytic performance in SRM was evaluated in a fixed bed reactor at varied conditions, and physical and structure properties of the catalysts were characterized by N2 adsorption-desorption, N2O titration, SEM, H2-TPR, XRD and TG, etc. Mechanical milled samples exhibited a porous structure that differed from that of the catalyst prepared by conventional impregnation. The SRM activity was enhanced for the strong interaction between copper ions and the copper aluminate formed on the ball-milled catalysts. Cu1Zn3Al6 exhibited the worst in activity, which could be ascribed to the poor metal dispersion. Cu–Al spinel in the catalysts plays an important role in the catalytic stability, which has prevented Cu from quick sintering in SRM, and the ball-milled catalysts have exhibited a slight deactivation with the time-on-stream of 25 ?h.  相似文献   

6.
Pt–Ni particles supported on Vulcan XC72R carbon powder have been prepared by a combination of crystalline Ni electroless deposition and its subsequent partial galvanic replacement by Pt upon treatment of the Ni/C precursor by a solution of chloroplatinate ions. The Pt-to-Ni atomic ratio of the prepared catalyst has been confirmed by EDS analysis to be ca. 1.5:1. No shift of Pt XPS peaks has been observed, indicating no significant modification of its electronic properties, whereas the small shift of the corresponding X-ray diffraction (XRD) peaks indicates the formation of a Pt-rich alloy. No Ni XRD peaks have been observed in the XRD pattern, suggesting the existence of very small pockets of Ni in the core of the particles. The surface electrochemistry of electrodes prepared from the catalyst material suggests the existence of a Pt shell. A moderate increase in intrinsic catalytic activity towards methanol oxidation in acid has been observed with respect to a commercial Pt catalyst, but significant mass specific activity has been recorded as a result of Pt preferential confinement to the outer layers of the catalyst nanoparticles.  相似文献   

7.
The development of efficient anti-corrosion and environmentally friendly coating systems are needed for the replacement of the highly toxic Cr-based conversion coatings for corrosion protection of aluminum alloys. In this study, we demonstrate that the direct application of ceramic cerium-based sol–gel coatings to AA7075-T6 substrates produces high-performance anti-corrosion layers. Electrochemical experiments and analyses of the microstructure demonstrate that the protective layers are very efficient for the passivation of the alloy surfaces operating as both passive and active barrier for corrosion protection.  相似文献   

8.
9.
Antireflective coatings (ARCs) on tri-layer thin film stacks were studied in this paper. Silica sols have been prepared by acid-catalyzed or base-catalyzed hydrolysis and condensation reactions of tetraethyl orthosilicate. Antireflective nanometric SiO2/TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. Seen from the transmittance spectra of different films, a maximum light transmittance of 99.9% was obtained at the band of 300–800 nm. Scanning electron microscope (SEM) and atomic force microscopy (AFM) confirm the well-covered surface morphology. By the SEM observations we can see that the films are full of coverage on glass surface and containing no voids or cracks. The image root mean square roughness of the two types of ARCs provided by the AFM is 1.21 and 3.04 nm, respectively. Furthermore, a surface profiler was used to determine the thickness of each layer in the obtained multi-layer coating system.  相似文献   

10.
Palladium–tin bicolloids have been prepared by chemical liquid deposition. The metals were cocondensed at 77 K with ethanol, 2-propanol, 2-methoxyethanol, 2-butanone and acetone. The distribution of particle sizes was determined by transmission electron microscopy of the stables dispersions. The sizes ranged from 3.8 nm for 2-methoxyethanol to 8.3 nm for acetone colloids. Electrophoretic measurements such as colloid charge and zeta potential were achieved. lt was found that the colloids possess electrical charge; therefore, it is postulated that their stability is by simple solvatation. The colloids showed stability over 1 week at room temperature. The zeta-potential values are in agreement with the stability and electrophoretic mobility. The highest zeta potential was obtained for PdSn–2-methoxyethanol colloids with 379 mV and the lowest for 2-butanone with 114 mV. The colloids exhibit absorption bands in the UV region. In the visible region no plasma absorption was found. Active solids obtained by evaporation of the solvent contain a certain amount of the solvent incorporated, and owing to their reactivity they produce a mixture of tin oxide with palladium and tin. The presence of solvents can be observed by Fourier transform IR incorporation in the finely divided solids. Characteristic bands for each solvent were measured. By means of thermogravimetric analysis and differential scanning calorimetry the thermal stability of the solids and the transition heat give us the carbonaceous residues in the films. The elemental analysis of the powders was carried out.  相似文献   

11.
12.
Stable highly concentrated TiO2 sol has been synthesized using binary titanyl ammonium sulfate monohydrate, (NH4)2TiO(SO4)2 · H2O. Treatment of the sol with an ammonia solution has yielded a stable hydrogel, which, after being dried, is transformed into a TiO2 xerogel. Study of the structure-related sorption and crystalline-chemical properties of the synthesized xerogel has shown that it represents a semicrystalline micro/mesoporous material with a rather developed specific surface area (Ssp = 120 m2/g). According to potentiometric titration data, the point of zero charge (PZC) of this material is located at pH 3.9. Measurements of the electrophoretic mobility (by microelectrophoresis) of TiO2 xerogel particles in solutions of HCl, NaOH, and salts of mono-, bi-, and trivalent cations have shown that (1) the isoelectric point (IEP) of the particles lies in the vicinity of pH 6.2, i.e., at a much higher pH than that for PZC; (2) the presence of increasing amounts of 1: 1 and 2: 1 electrolytes causes a gradual and a dramatic reduction in the ζ potential of the particles, respectively; and (3), in the presence of an electrolyte with a trivalent counterion, the surface charge is reversed. The behavior of TiO2 xerogel in an electric field is similar to that of lyophobic particles, with the difference that there is no maximum in the ζ potential versus 1: 1 electrolyte concentration dependence and the measured IEP of the xerogel is much higher than its PZC. Possible reasons for this discrepancy have been discussed.  相似文献   

13.
Development of optimal scaffolds for bone tissue engineering and regeneration is still a challenge, since many materials and structures have been proposed but few have reached clinical expectations. This work reports on the preparation and characterization of SiO2-CaO and SiO2-CaO-P2O5 sol–gel derived monoliths, with potential application as glass scaffolds for bone regeneration, exhibiting a nano/macro trimodal pore size distribution, including pores of ~100’s of micrometers (μm), several microns and just a few nanometers (nm) in size. Interconnected macropores (~20–200 μm) have been obtained in the present work by polymerization-induced spinodal phase separation along with the sol–gel transition, when a water soluble polymer [poly(ethylene oxide)] was added to the sol–gel solution; the several-micron pores are spherical and isolated and might be the result of secondary phase separation by nucleation-growth mechanism; the interconnected nanopore (~5–25 nm) structure of the macroporous gel skeleton, on the other hand, was tailored by solvent exchange procedures. The morphological and textural characterization of these materials was performed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray ultra microscopy (XuM), nitrogen adsorption and mercury intrusion porosimetry. The factors affecting the porosity exhibited by the scaffolds, such as glass composition and solvent exchange conditions, have been assessed.
Ana C. MarquesEmail:
  相似文献   

14.
Some Mo-V-Te-La catalysts with varied component were prepared by hydrothermal synthesis and dried with microwave method. The component of the catalyst were greatly affected the crystal structure and Raman spectrum. The phase in the catalysts was different when the Mo, V, and Te content varied. When the catalyst containing the same Mo, V content, due to the effect of dopant of Te element (V0.07 Mo0.93)5O14 became the main phase in the catalyst. The catalyst also showed good activity for the reaction of selective oxidation propane to acrolein and acrylic acid.  相似文献   

15.
16.
This study focuses on gas-phase polymerization of ethylene using the titanium-based Ziegler–Natta catalysts prepared from different magnesium sources including MgCl2 (Cat A), magnesium powder (Cat B), and Mg(OEt)2 (Cat C). During polymerization, different cocatalysts were also used. It was found that Cat C with triethylaluminum as a cocatalyst exhibited the highest activity. This was likely attributed to optimal distribution of active sites on the catalyst surface. It can be observed by increased temperature in the reactor due to highly exothermic reaction during polymerization. By the way, the morphologies of the polymer obtained from this catalyst were spherical, which is more preferable. Besides the catalytic activity, crystallinity and morphology were also affected by the different magnesium sources used to prepare the catalysts.  相似文献   

17.
The development of highly active and stable non-noble metal catalysts (NNMC) for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEM-FC) becomes of importance in order to enable cost reduction. In this work, we discuss the structural composition as derived from Fe-57 Mößbauer spectroscopy and X-ray diffraction, catalytic performance determined by a rotating (ring) disk electrode (RRDE) technique and stability evaluation of our Fe–N–C catalysts prepared by an intermediate acid leaching (IAL). The advantage of this IAL is given by a high density of active sites within the catalyst, as even without sulphur addition, an iron carbide formation and related disintegration of active sites are inhibited. In addition, our accelerated stress tests illustrate better stability of the sulphur-free IAL catalyst in comparison to the sulphur-added one.  相似文献   

18.
19.
20.
Journal of Sol-Gel Science and Technology - SiO2 anti-reflective (AR) layers have been prepared via sol–gel dip-coating technique and the mechanism study of crack formation has been then...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号