首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
2.
3.
We present a unified derivation of Bohmian methods that serves as a common starting point for the derivative propagation method (DPM), Bohmian mechanics with complex action (BOMCA), and the zero-velocity complex action method (ZEVCA). The unified derivation begins with the ansatz psi = eiS/Planck's where the action (S) is taken to be complex, and the quantum force is obtained by writing a hierarchy of equations of motion for the phase partial derivatives. We demonstrate how different choices of the trajectory velocity field yield different formulations such as DPM, BOMCA, and ZEVCA. The new derivation is used for two purposes. First, it serves as a common basis for comparing the role of the quantum force in the DPM and BOMCA formulations. Second, we use the new derivation to show that superposing the contributions of real, crossing trajectories yields a nodal pattern essentially identical to that of the exact quantum wavefunction. The latter result suggests a promising new approach to deal with the challenging problem of nodes in Bohmian mechanics.  相似文献   

4.
In this study, an analysis of the one-dimensional Eckart and Gaussian barrier scattering problems is undertaken using approximate quantum trajectories. Individual quantum trajectories are computed using the derivative propagation method (DPM). Both real-valued and complex-valued DPM quantum trajectories are employed. Of interest are the deep tunneling and the higher energy barrier scattering problems in cases in which the scattering barrier is "thick" by comparison to the width of the initial wave packet. For higher energy scattering problems, it is found that real-valued DPM trajectories very accurately reproduce the transmitted probability densities at low orders when compared to large fixed-grid calculations. However, higher orders must be introduced to obtain good probabilities for deep tunneling problems. Complex-valued DPM is found to accurately reproduce transmitted probability densities at low order for both the deep tunneling and the higher energy scattering problems. Of particular note, complex-classical trajectories are found to very nearly give the exact result for the deep barrier tunneling scattering problem, and the complex DPM converges well at high orders for these thick barrier scattering problems. A variety of analyses are performed to elucidate the dynamics of complex-valued DPM trajectories. The complex-extended barrier potentials are examined in detail, including an analysis of the complex force. Of particular interest are initial conditions for complex-valued DPM trajectories known as isochrones. All trajectories launched from an isochrone arrive on the real axis on the transmitted side of the barrier at the same time. The computation and properties of isochrones as well as the behavior of the initial wave packet in the complex plane are also examined.  相似文献   

5.
Non-adiabatic molecular dynamics with quantum solvent effects   总被引:1,自引:0,他引:1  
Three novel approaches extending quantum-classical non-adiabatic (NA) molecular dynamics (MD) to include quantum effects of solvent environments are described. In a standard NA-MD the solute subsystem is treated quantum mechanically, while the larger solvent part of a system is treated classically. The three novel approaches presented here are based on the Bohmian formulation of quantum mechanics, the stochastic Schrödinger equation for the evolution of open quantum systems and the quantized Hamilton dynamics generalization of classical mechanics. The approaches extend the standard NA-MD to incorporate the following quantum effects of the solvent. (1) Branching, i.e. the ability of solvent quantum wave packets to split and follow asymptotically diverging trajectories correlated with different quantum states of the solute. (2) Decoherence, i.e. loss of quantum interference within the solute subsystem induced by the diverging solvent trajectories. (3) Zero point energy that contributes to NA coupling and must be preserved during the energy exchange between solvent and solute degrees of freedom. The Bohmian quantum-classical mechanics, stochastic mean-field and quantized mean-field approximations incorporate the quantum solvent effects into the standard quantum-classical NA-MD in a straightforward and efficient way that can be easily applied to quantum dynamics of condensed phase chemical systems.  相似文献   

6.
7.
8.
In a previous paper [B. Poirier, J. Chem. Phys. 121, 4501 (2004)] a unique bipolar decomposition psi = psi1 + psi2 was presented for stationary bound states Psi of the one-dimensional Schrodinger equation, such that the components psi1 and psi2 approach their semiclassical WKB analogs in the large-action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well behaved, even when Psi has many nodes or is wildly oscillatory. A modification for discontinuous potential stationary scattering states was presented in a second, companion paper [C. Trahan and B. Poirier, J. Chem. Phys.124, 034115 (2006), previous paper], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant-velocity-trajectory version is also developed.  相似文献   

9.
A methodology to efficiently conduct simultaneous dynamics of electrons and nuclei is presented. The approach involves quantum wave packet dynamics using an accurate banded, sparse and Toeplitz representation for the discrete free propagator, in conjunction with ab initio molecular dynamics treatment of the electronic and classical nuclear degree of freedom. The latter may be achieved either by using atom-centered density-matrix propagation or by using Born-Oppenheimer dynamics. The two components of the methodology, namely, quantum dynamics and ab initio molecular dynamics, are harnessed together using a time-dependent self-consistent field-like coupling procedure. The quantum wave packet dynamics is made computationally robust by using adaptive grids to achieve optimized sampling. One notable feature of the approach is that important quantum dynamical effects including zero-point effects, tunneling, as well as over-barrier reflections are treated accurately. The electronic degrees of freedom are simultaneously handled at accurate levels of density functional theory, including hybrid or gradient corrected approximations. Benchmark calculations are provided for proton transfer systems and the dynamics results are compared with exact calculations to determine the accuracy of the approach.  相似文献   

10.
Recently a new formulation of quantum mechanics has been introduced, based on signed classical field‐less particles interacting with an external field by means of only creation and annihilation events. In this article, we extend this novel theory to the case of many‐body problems. We show that, when restricted to spatial finite domains and discrete momentum space, the proposed extended theory is equivalent to the time‐dependent many‐body Wigner Monte Carlo method. In this new picture, the treatment of entangled systems comes naturally and, therefore, we apply it to the study of quantum entangled systems. The latter is represented in terms of two Gaussian wave packets moving in opposite directions. We introduce the presence of a dissipative background and show how the entanglement is affected by different (controlled) configurations.  相似文献   

11.
A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.  相似文献   

12.
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.  相似文献   

13.
Solution of the Schrodinger equation within the de Broglie-Bohm formulation is based on propagation of trajectories in the presence of a nonlocal quantum potential. We present a new strategy for defining approximate quantum potentials within a restricted trial function by performing the optimal fit to the log-derivatives of the wave function density. This procedure results in the energy-conserving dynamics for a closed system. For one particular form of the trial function leading to the linear quantum force, the optimization problem is solved analytically in terms of the first and second moments of the weighted trajectory distribution. This approach gives exact time-evolution of a correlated Gaussian wave function in a locally quadratic potential. The method is computationally cheap in many dimensions, conserves total energy and satisfies the criterion on the average quantum force. Expectation values are readily found by summing over trajectory weights. Efficient extraction of the phase-dependent quantities is discussed. We illustrate the efficiency and accuracy of the linear quantum force approximation by examining a one-dimensional scattering problem and by computing the wavepacket reaction probability for the hydrogen exchange reaction and the photodissociation spectrum of ICN in two dimensions.  相似文献   

14.
New methods are proposed to treat nonadiabatic chemical dynamics in realistic large molecular systems by using the Zhu-Nakamura (ZN) theory of curve-crossing problems. They include the incorporation of the ZN formulas into the Herman-Kluk type semiclassical wave packet propagation method and the trajectory surface hopping (TSH) method, formulation of the nonadiabatic transition state theory, and its application to the electron transfer problem. Because the nonadiabatic coupling is a vector in multidimensional space, the one-dimensional ZN theory works all right. Even the classically forbidden transitions can be correctly treated by the ZN formulas. In the case of electron transfer, a new formula that can improve the celebrated Marcus theory in the case of normal regime is obtained so that it can work nicely in the intermediate and strong electronic coupling regimes. All these formulations mentioned above are demonstrated to work well in comparison with the exact quantum mechanical numerical solutions and are expected to be applicable to large systems that cannot be treated quantum mechanically numerically exactly. To take into account another quantum mechanical effect, namely, the tunneling effect, an efficient method to detect caustics from which tunneling trajectories emanate is proposed. All the works reported here are the results of recent activities carried out in the author's research group. Finally, the whole set of ZN formulas is presented in Appendix.  相似文献   

15.
McMurchie–Davidson recursion formula is extended to derive the ab initio molecular integrals with higher angular quantum number complex Gaussian type basis function which has complex‐valued center coordinates and a complex‐valued exponent. Using the analytical recursion formulae, some calculations of electronic dynamics after beta decay of tritium hydride molecular ion HT+ are performed by a quantum wave packet method with thawed Gaussian basis functions of s‐ and p‐type. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
A canonical averaging in the second-order quantized Hamilton dynamics   总被引:1,自引:0,他引:1  
Quantized Hamilton dynamics (QHD) is a simple and elegant extension of classical Hamilton dynamics that accurately includes zero-point energy, tunneling, dephasing, and other quantum effects. Formulated as a hierarchy of approximations to exact quantum dynamics in the Heisenberg formulation, QHD has been used to study evolution of observables subject to a single initial condition. In present, we develop a practical solution for generating canonical ensembles in the second-order QHD for position and momentum operators, which can be mapped onto classical phase space in doubled dimensionality and which in certain limits is equivalent to thawed Gaussian. We define a thermal distribution in the space of the QHD-2 variables and show that the standard beta=1/kT relationship becomes beta'=2/kT in the high temperature limit due to an overcounting of states in the extended phase space, and a more complicated function at low temperatures. The QHD thermal distribution is used to compute total energy, kinetic energy, heat capacity, and other canonical averages for a series of quartic potentials, showing good agreement with the quantum results.  相似文献   

17.
18.
A conceptually simple approach, the covering function method (CFM), is developed to cope with the node problem in the hydrodynamic formulation of quantum mechanics. As nodes begin to form in a scattering wave packet (detected by a monitor function), a nodeless covering wave function is added to it yielding a total function that is also nodeless. Both local and global choices for the covering function are described. The total and covering functions are then propagated separately in the hydrodynamic picture. At a later time, the actual wave function is recovered from the two propagated functions. The results obtained for Eckart barrier scattering in one dimension are in excellent agreement with exact results, even for very long propagation times t=1.2 ps. The capability of the CFM is also demonstrated for multidimensional propagation of a vibrationally excited wave packet.  相似文献   

19.
A new approach for propagating time-dependent quantum wave packets is presented based on the direct numerical solution of the quantum hydrodynamic equations of motion associated with the de Broglie–Bohm formulation of quantum mechanics. A generalized iterative finite difference method (IFDM) is used to solve the resulting set of non-linear coupled equations. The IFDM is 2nd-order accurate in both space and time and exhibits exponential convergence with respect to the iteration count. The stability and computational efficiency of the IFDM is significantly improved by using a “smart” Eulerian grid which has the same computational advantages as a Lagrangian or Arbitrary Lagrangian Eulerian (ALE) grid. The IFDM is generalized to treat higher-dimensional problems and anharmonic potentials. The method is applied to a one-dimensional Gaussian wave packet scattering from an Eckart barrier, a one-dimensional Morse oscillator, and a two-dimensional (2D) model collinear reaction using an anharmonic potential energy surface. The 2D scattering results represent the first successful application of an accurate direct numerical solution of the quantum hydrodynamic equations to an anharmonic potential energy surface.  相似文献   

20.
The time‐dependent discrete variable representation (TDDVR) of a wave function with grid points defined by the Hermite part of the Gauss–Hermite (G‐H) basis set introduces quantum corrections to classical mechanics. The grid points in this method follow classical trajectory and the approach converges to the exact quantum formulation with sufficient trajectories (TDDVR points) but just with a single grid point; only classical mechanics performs the dynamics. This newly formulated approach (developed for handling time‐dependent molecular quantum dynamics) has been explored to calculate vibrational transitions in the inelastic scattering processes. Traditional quantum mechanical results exhibit an excellent agreement with TDDVR profiles during the entire propagation when enough grid points are included in the quantum‐classical dynamics. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号