首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional particle tracking velocimetry (3D-PTV) is applied to particle-laden pipe flows at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The effects of flow direction (upward or downward) and mean concentration (in the range 0.5 × 10−5–3.2 × 10−5) on the production of turbulence are assessed for inertial particles with a Stokes number equal to 2.3, based on the particle relaxation time and viscous scales. The turbulence production and the Kolmogorov constant, both measured for particle laden flows in upflow and downflow, allowed for the derivation of a break-up criterion as a function of the radial coordinate. This criterion predicts the maximum possible particle size before break-up may occur. It is shown that the maximum particle size is bigger at the pipe centerline than in the near-wall zone by more than a factor of 5. Flow direction affects the particle concentration profile, with wall peaking in downflow and core peaking in upflow. This affects both the residence time and the maximum particle size, the latter by 7%.  相似文献   

2.
The results of direct numerical simulation of turbulent flows of non-Newtonian pseudoplastic fluids in a straight pipe are presented. The data on the distributions of the turbulent stress tensor components and the shear stress and turbulent kinetic energy balances are obtained for steady turbulent flows at the Reynolds numbers of 104 and 2×104. As distinct from Newtonian fluid flows, the viscous shear stresses turn out to be significant even far from the wall. In power-law fluid flows the mechanism of the energy transport from axial to transverse component fluctuations is suppressed. It is shown that with decrease in the fluid index the turbulent transfer of the momentum and the velocity fluctuations between the wall layer and the flow core reduces, while the turbulent energy flux toward the wall increases. The earlier-proposed models for the average viscosity and the non-Newtonian one-point correlations are in good agreement with the data of direct numerical simulation.  相似文献   

3.
A fully-developed turbulent pipe flow is allowed to pass through a rotating pipe section, whose axis of rotation coincides with the pipe axis. At the exit end of the rotating section, the flow passes into a stationary pipe. As a result of the relaxation of surface rotation, the turbulent flow near the pipe wall is affected by extra turbulence production created by the large circumferential shear strain set up by the rapid decrease of the rotational velocity to zero at the wall. However, the flow in the most part of the pipe is absent of this extra turbulence production because the circumferential strain is zero as a result of the solid-body rotation imparted to the flow by the rotating pipe section. The combined effect of these two phenomena on the flow is investigated in detail using hot-wire anemometry techniques. Both mean and turbulence fields are measured, together with the wall shear and the turbulent burst behavior at the wall. A number of experiments at different rotational speeds are carried out. Therefore, the effects of rotation on the behavior of wall shear, turbulent burst at the wall, turbulence production and the near-wall flow can be documented and analysed in detail.  相似文献   

4.
Two turbulent separated and reattaching flows produced by a sudden expansion in a pipe have been studied. The first was produced by a simple axisymmetric sudden enlargement from a nozzle of diameter 80 mm to a pipe of diameter 150 mm. The second was the flow at the same enlargement with the addition of a centerbody 90 mm downstream of the nozzle exit. Detailed measurements of velocity and skin friction (made primarily using pulsed wires) and of wall static pressure are presented. Without the centerbody the flow structure is similar to that observed in other sudden pipe expansions and over backward-facing steps. A turbulent free shear layer, bearing some similarity to that of a round jet, grows from separation and then reattaches to the pipe wall downstream. Reattachment is a comparatively gradual process, the shear layer approaching the wall at a glancing angle. The introduction of the centerbody causes the shear layer to curve towards the wall and reattach at a much steeper angle. Reattachment is much more rapid; gradients of skin friction and pressure along the wall are many times those without the centerbody. The high curvature of the shear layer strongly influences its turbulent structure, locally suppressing turbulence levels and reducing its growth rate.  相似文献   

5.
 An estimate of the low wavenumber component of surface turbulence shear stress as a function of frequency has been obtained through measurements of the correlations of the longitudinal component of turbulence velocity made close to the surface at y +=7. The data were acquired in a fully-developed turbulent pipe flow at a Reynolds number (based on centreline velocity and pipe diameter) of 268000, using two single hot-wire anemometer probes. A novel data analysis procedure has been introduced to establish the accuracy limits of the low wavenumber turbulence energy estimate for frequencies in the similarity regime of wall turbulence and the results are compared with other measurement techniques. Received: 18 November 1993/Accepted: 21 April 1997  相似文献   

6.
A generalized treatment for the wall boundary conditions relating to turbulent flows is developed that blends the integration to a solid wall with wall functions. The blending function ensures a smooth transition between the viscous and turbulent regions. An improved low Reynolds number k?ε model is coupled with the proposed compound wall treatment to determine the turbulence field. The eddy viscosity formulation maintains the positivity of normal Reynolds stresses and Schwarz' inequality for turbulent shear stresses. The model coefficients/functions preserve the anisotropic characteristics of turbulence. Computations with fine and coarse meshes of a few flow cases yield appreciably good agreement with the direct numerical simulation and experimental data. The method is recommended for computing the complex flows where computational grids cannot satisfy a priori the prerequisites of viscous/turbulence regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A series of numerical simulations were performed to investigate the distribution and deposition properties of particles in turbulent flows bounded by permeable walls using the Large Eddy Simulation (LES) with a Lagrangian trajectory approach. The wall permeation speeds were taken from 10−4 to 10−2 of the bulk velocity. The directions of the permeation speed were the same at both walls, and they were inward on one wall but outward on the other wall to reserve the fluid mass. Particles with Stokes number (respecting viscous time scale) around 0.1, 1 and 10 were released in the fully developed turbulent channel flow. The particle–particle interaction and the retroaction from particles to the fluid were neglected. The fluid-phase turbulence statistical properties and particle's transport characteristics by vortexes were then analyzed in details. If the wall permeation exists, the turbulence intensities will be depressed close to the outward permeable wall but increased near the inward permeable wall. Not influenced by the wall permeation, the suspended particles with St+ ∼O(1) tend to accumulate in the less vortical zones away from the wall, while those particles in the flow regions near the outward permeable wall will distribute disregarding of the vorticity. The turbulence structures near the outward permeable wall are found to exert promotional effects on the particle deposition rate, but such effects are different for particles with various Stokes number. A distribution tendency of streamwise streaks for the deposited particles is also found on the wall imposed by the high outward permeation speed and the clustering deposition pattern is more obvious with increasing particle Stokes number.  相似文献   

8.
An experimental study of a two-dimensional plane turbulent wall jet   总被引:1,自引:0,他引:1  
 Laser-Doppler measurements were conducted in a plane turbulent wall jet at a Reynolds number based on inlet velocity, Re 0, of 9600. The initial development as well as the fully developed flow was studied. Special attention was given to the near-wall region, including the use of small measuring volumes and the application of specific near-wall data corrections, so that wall shear stresses were determined directly from the mean velocity gradient at the wall using only data below y +=4. It was possible to resolve the inner peak in the streamwise turbulence intensity as well as the inner (negative) peak in the shear stress. Limiting values of (u′)+ and uv + were determined. Turbulence data from the outer region of the flow were compared to earlier hot wire measurements and large differences in the normal turbulence intensity and the shear stress were found. These differences can be attributed to high turbulence intensity effects on the hot-wires. Received: 17 October 1996 / Accepted: 8 December 1997  相似文献   

9.
 Turbulence measurements are reported on the three-dimensional turbulent boundary layer along the centerline of the flat endwall in a 30° bend. Profiles of mean velocities and Reynolds stresses were obtained down to y +≈2 for the mean flow and y +≈8 for the turbulent stresses. Mean velocity data collapsed well on a simple law-of-the-wall based on the magnitude of the resultant velocity. The turbulence intensity and turbulent shear stress magnitude both increased with increased three-dimensionality. The ratio of these two quantities, the a 1 structure parameter, decreased in the central regions of the boundary layer and showed profile similarity for y +<50. The shear stress vector angle lagged behind the velocity gradient vector angle in the outer region of the boundary layer, however there was an indication that the shear stress vector tends to lead the velocity gradient vector close to the wall. Received: 16 July 1996/Accepted: 14 July 1997  相似文献   

10.
Experiments have been undertaken to investigate the natural convection of air in a tall differentially heated rectangular cavity (2.18 m high by 0.076 m wide by 0.52 m in depth). They were performed with temperature differentials between the vertical plates of 19.6°C and 39.9°C, giving Rayleigh numbers based on the width of 0.86×106 and 1.43×106. Under these conditions the flow in the core of the cavity is fully turbulent and property variations with temperature are comparatively small. A previously used experimental rig has been modified, by fitting partially conducting top and bottom walls and outer guard channels, to provide boundary conditions which avoid the inadequately defined sharp changes in temperature gradient and other problems associated with insufficient insulation on nominally adiabatic walls. Mean and turbulent temperature and velocity variations within the cavity have been measured, together with heat fluxes and turbulent shear stresses. The temperature and flow fields were found to be closely two-dimensional, except close to the front and back walls, and anti-symmetric across the diagonal of the cavity. The partially conducting roof and floor provide locally unstable thermal stratification in the wall jet flows there, which enhances the turbulence as the flow moves towards the temperature controlled plates. The results provide a greatly improved benchmark for the testing of turbulence models in this low turbulence Reynolds number flow.  相似文献   

11.
Fully developed turbulence measurements in pipe flow were made in the Reynolds number ranging from 10×103 to 350×103 with a hot-wire anemometer and a Pitot tube. Comparisons were made with the experimental results of previous work. The mean velocity profile and the turbulent intensity in the experiments indicate that for the mean velocity profile, in the fully developed turbulent pipe flow, von Kármán's constant κ is a function of Reynolds number, i.e. κ increases slowly with the Reynolds number. The empirical relationships could not be considered to be accurate enough to describe the fully developed turbulence over the whole Reynolds number range in pipe flow. The project supported by the Deutscher Akademische Austauschdienst (DAAD)  相似文献   

12.
The present research aims to investigate the dynamics of a single laboratory irregular wave, characterized by a narrow-banded spectrum and developing on a sloping sand bottom, in intermediate waters up to the surf zone. Experiments focused on the wave shoaling region, in order to examine how the wave is affected by breaking induced turbulence offshore the surf zone. A 3D acoustic Doppler velocimeter was used to measure the three wave velocity components, which were all processed to evaluate the time-averaged vertical distributions of orbital velocities, wave and turbulent Reynolds shear stresses and turbulent intensities. The vertical distributions of the phase-averaged velocity components, turbulent kinetic energy and transport of turbulence were also analysed. The adopted phase-averaging technique was applied to each investigated measurement point. Therefore, the crucial element of the study is that all the analysed values derive directly from real measurements and are not approximated by any kind of interpolation. The study confirmed some dynamic behaviour in the shoaling zone already known in the literature, such as the typical cell-type flow pattern of the mean flow and the necessity to evaluate the turbulent kinetic energy with all the three velocity components, when available, which would otherwise be underestimated. Referring to the time-averaged wave and Reynolds shear stresses, a contribution was added to the open debate on their order of magnitude. The measured wave Reynolds shear stresses were also compared with the results of the model by Zou et al. (J Geophys Res 111:C09032, 2006), confirming the behaviour typical of dissipative breaking waves. The analysis of turbulence transport in the shoaling zone revealed that it is seaward directed close to the surface and landward directed close to the bottom. The results presented in the paper can be extended only to other analogous flow conditions.  相似文献   

13.
When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.  相似文献   

14.
Turbulent characteristics of shear-thinning fluids in recirculating flows   总被引:1,自引:0,他引:1  
 A miniaturised fibre optic Laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1–0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present downstream turbulence field was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. Received: 23 February 1999/Accepted: 28 April 1999  相似文献   

15.
Skin friction drag is much greater in turbulent flows as compared with that in laminar flows. It is well known that traveling wave control can be used to achieve a large drag reduction. In the present study, a direct numerical simulation of a turbulent pipe flow was performed to clarify the mechanism of the drag reduction caused by the traveling wave control. The flow induced by the control was evaluated using pathline analysis. Near the wall, a “closed flow” was formed, wherein the injected particles return to the wall owing to the suction flow. The random component of Reynolds shear stress was perfectly suppressed in the closed flow, which suggests that there was no turbulence. The controlled flow was categorized into four patterns, and each flow characteristic and drag reduction effect was discussed. When the closing rate is high, the drag decreases, while when the closing rate is low, i.e., when the injected particles are released into the main flow, the turbulence is maintained. If the thickness of the layer suppressing turbulence is insufficient, a significant effect in terms of the drag reduction cannot be expected. The large drag reduction owing to the traveling wave control can be attributed to the elimination of turbulence in the region near the wall.  相似文献   

16.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

17.
The paper explores the possibilities that different turbulence closures offer, for in‐depth analysis of a complex flow. The case under investigation is steady, turbulent flow in a pipe with sudden expansion without/with normal‐to‐wall injection through jets. This is a typical geometry where generation of turbulence energy takes place, due to sudden change in boundary conditions. This study is aimed at investigating the capability of a developed computational program by the present authors with three different turbulence models to calculate the mean flow variables. Three two‐equation models are implemented, namely the standard linear k ? ε model, the low Reynolds number k ? ε model and the cubic nonlinear eddy viscosity (NLEV) k ? ε model. The performance of the chosen turbulence models is investigated with regard to the available data in the literature including velocity profiles, turbulent kinetic energy and reattachment position in a pipe expansion. In order to further assess the reliability of the turbulence models, an experimental program was conducted by the present authors also at the fluid mechanics laboratory of Menoufiya University. Preliminary measurements, including the surface pressure along the two walls of the expansion pipe and the pressure drop without and with the presence of different arrangements of wall jets produced by symmetrical or asymmetrical fluid cross‐flow injection, are introduced. The results of the present studies demonstrate the superiority of the cubic NLEV k ? ε model in predicting the flow characteristics over the entire domain. The simple low Reynolds number k ? ε model also gives good prediction, especially when the reattachment point is concerned. The evaluation of the reattachment point and the pressure‐loss coefficient is numerically addressed in the paper using the cubic NLEV k ? ε model. The results show that the injection location can control the performance of the pipe‐expansion system. It is concluded that the introduction of flow injection can increase the energy loss in the pipe expansion. The near‐field turbulence structure is also considered in the present study and it is noticed that the turbulence level is strongly affected by the cross‐flow injection and the jet location. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this work we study deposition of particles and droplets in non-rotating swirled turbulent pipe flow. We aim at verifying whether the capability of swirl to enhance particle separation from the core flow and the capability of turbulence to efficiently trap particles at the wall can co-exist to optimize collection efficiency in axial separators. We perform an Eulerian–Lagrangian study based on Direct Numerical Simulation (DNS) of turbulence, considering the effect of different swirl intensities on turbulence structures and on particle transfer at varying particle inertia. We show that, for suitably-chosen flow parameters, swirl may be superimposed to the base flow without disrupting near-wall turbulent structures and their regeneration mechanisms. We also quantify collection efficiency demonstrating for the first time that an optimal synergy between swirl and wall turbulence can be identified to promote separation of particles and droplets.  相似文献   

19.
Primary breakup to form droplets at liquid surfaces is an important fundamental process to study as it determines the initial properties of the dispersed phase, which affect mixing rates, secondary breakup, droplet collisions, and flow separation within the dispersed flow region. Primary breakup can be regarded as one of the least developed model components for simulating and predicting liquid jet breakup. However, it is of paramount importance in many technical applications, e.g. fuel injection in engines and spray painting. This paper presents a numerical investigation of primary breakup of a turbulent liquid jet in still air at standard conditions using the one-dimensional turbulence (ODT) modeling framework. ODT is a stochastic model that simulates turbulent flow evolution along a notional 1D line of sight by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles. An important feature of ODT is the resolution of all relevant scales, both temporal and spatial. The restriction to one spatial dimension in ODT permits affordable high resolution of interfacial and single-phase property gradients, which is key to capturing the local behavior of the breakup process and allows simulations at high Reynolds and Weber numbers that are currently not accessible to direct numerical simulations (DNS).This paper summarizes our extensions of the ODT model to simulate geometrically simple jet breakup problems, including representations of Rayleigh wave breakup, turbulent breakup, and shear-driven breakup. Each jet breakup simulation consists of a short temporal channel section to initialize a turbulent velocity profile at the nozzle exit followed by an adjacent jet section. The simulations are carried out for jet exit Reynolds number of 11,500, 23,000, 46,000 and 92,000 while the Weber number is varied within the range 102–107. We present results on breakup statistics including spatial locations of droplet release, droplet sizes and liquid core length. The results on primary breakup are compared to experimental results and models.  相似文献   

20.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号