首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
冯翠玲  谢剑炜 《色谱》2005,23(1):108-108
神经性毒剂主要包括沙林、梭曼、GF、VX和俄罗斯VX。对环境样品(水、泥土、粮食等)中这些毒剂的分析检测方法有气相色谱法(GC)和气相色谱一质谱法,应用较多的检测器是氢火焰离子化检测器(FID)。对生物样品中某种毒剂的分析检测方法已有报道,但对上述5种毒剂的系统检测方法未见报道。我们建立的染毒血浆中5种毒剂同时提取、同时检测的气相色谱-火焰光度检测(GC-FPD)的分析方法,操作简便,系统性强,灵敏度高,血浆中毒剂的回收率较高,杂质不干扰毒剂检测。  相似文献   

2.
气相色谱-质谱法分析土壤中神经性毒剂及糜烂性毒剂   总被引:1,自引:1,他引:1  
建立了土壤中神经性毒剂及糜烂性毒剂GC—MS-SIM分析法,对土壤中6种毒剂的样品制备和二步萃取方法进行了研究;该法的回收率在80.7%~89.5%,6种毒剂在0.5~10mg/L范围内毒剂质量浓度和峰面积有良好的线性相关,方法检出限为4~20ng/g,该法适用于痕量化学战剂分析。  相似文献   

3.
左伯莉  李伟  陈传治  张天 《分析化学》2007,35(8):1171-1174
压电晶体微天平(QCM)阵列传感器在毒剂侦检领域具有广泛的应用前景。本研究建立了QCM阵列传感器毒剂检测系统,以氢键酸性共聚硅氧烷(BSP3)、聚表氯醇(PECH)和乙基纤维素(ECEL)为膜材料制备了对毒剂敏感的QCM阵列传感器,对沙林、芥子气、甲基膦酸二甲酯进行了定量检测,并结合模式识别方法对检测结果进行了分析处理,识别率达到98%以上,为探索QCM阵列传感器对毒剂的定性定量分析提供了方法依据。  相似文献   

4.
文章系统综述了神经性毒剂中毒体内诊断生物标志物,包括毒剂原型、降解产物和毒剂蛋白加合物等的分析检测方法,以及近年来此领域的新技术和新进展,引文45篇。  相似文献   

5.
含磷毒剂及其降解产物的气相色谱-质谱测定方法研究   总被引:1,自引:0,他引:1  
研究了用台式气相色谱-质谱仪分析测定含磷毒剂及其降解产物,并对降解产物的衍生化方法及它们的色谱行为进行了研究,总结分析了它们的质谱裂解特点及规律,测定了水样中的含磷毒剂及降解产物。  相似文献   

6.
糜烂性毒剂是一种以皮肤糜烂为主兼有全身中毒为特点的毒剂。文章介绍了芥子气、氮芥和路易氏气等糜烂性毒剂的发现历史、理化性质、中毒机理、救治方法;同时探讨了无害化转化的方法,包括利用芥子气和路易氏气转化成为太阳能电池的重要物质和利用糜烂性毒剂的中毒机理来研究治癌的化疗药物。  相似文献   

7.
有机磷毒剂是一类含磷(膦)酸或磷(膦)酸酯类高毒有机物及其衍生物的统称,能破坏正常神经传导,造成神经系统损伤,在军事行动和农业生产等方面的非常规使用给人类生存发展带来了严重威胁。电化学传感技术以其设备简便、灵敏度高、响应速度快等优点展现了实地传感有机磷毒剂的巨大潜力。总结了近几年有机磷毒剂的电化学传感相关研究报道,依据检测原理差异性将其分为4类:直接检测法、电化学酶法、电化学免疫法和电化学发光法。分析了各种方法的检测机理和优缺点;介绍了不同传感方法对工作电极修饰材料的要求;比较了不同电极修饰材料对方法检出限和线性范围的影响;阐述了电化学与生物技术结合检测有机磷毒剂的研究进展。电化学酶法和电化学免疫法具备选择性好和适用范围宽等优点,进而提出了纳米酶、纳米抗体和多维修饰材料结合传感检测含磷毒剂的新思路。  相似文献   

8.
李斌  付艳艳  程建功 《化学进展》2021,33(9):1461-1472
有机磷神经毒剂是一类具有极大杀伤力的化学毒剂,这类有机磷酸盐通过破坏人体内的神经递质乙酰胆碱酯酶麻痹人的中枢神经,很小的剂量就可致人死亡,因此对有机磷神经毒剂进行快速简便地检测具有重要意义。荧光化学传感具有灵敏度高、选择性好和响应时间短等优点,近些年来应用荧光传感方法对有机磷神经毒剂及其模拟物的检测越来越受到研究人员的关注。本篇综述对荧光传感的原理做了简要介绍,综述了近年来国内外研究者开发的各种用于有机磷神经毒剂及其模拟物检测的荧光新材料与新方法,并对荧光传感方法应用于有机磷神经毒剂检测的未来进行了展望。  相似文献   

9.
本文概述了GC-MIP-AED技术的原理、特性及其影响因素,并综述了其在化学毒剂分析中的应用.  相似文献   

10.
对化学毒剂及其降解产物的分析检测是准确鉴别化学沾染的重要手段.由于化学毒剂及其降解产物的样品可能存在于各种基质中,且部分化学毒剂在水体等基质中降解速度过快,所以将痕量样品从复杂基质中快速高效的富集提取出来显得尤其重要.微萃取技术具有装置体积小、使用少量或不使用溶剂、绿色环保、易与色谱分析技术联用等突出优势受到广泛的关注...  相似文献   

11.
《Electroanalysis》2003,15(3):157-167
This review discusses current development in electrochemical biosensors for detection of biological warfare agents. This could include bacteria, viruses and toxins that are aerosoled deliberately in air, food or water to spread terrorism and cause disease or death to humans, animals or plants. The rapid and unequivocal detection and identification of biological warfare agents is a major challenge for any government including military, health and other government agents. Reliable, specific characterization and identification of the microorganism from sampling location, either air, water, soil or others is required. This review will survey different types of electrochemical biosensors has been developed based on the following: i) Immunosensors ii) PCR (DNA base Sensor) iii) Bacteria or whole cell sensor and iv) Enzyme sensor. This article gives an overview of electrochemical biosensor for detection of biological warfare agents. Electrochemical biosensors have the advantages of sensitivity, selectivity, to operate in turbid media, and amenable to miniaturization. Recent developments in immunofiltration, flow injection, and flow‐through electrochemical biosensors for bacteria, viruses, and toxin detection are reviewed. The current research and development in biosensors for biological warfare agents detection is of interest to the public as well as to the defense is also discussed.  相似文献   

12.
Buchapudi KR  Huang X  Yang X  Ji HF  Thundat T 《The Analyst》2011,136(8):1539-1556
In the last fifteen years, microcantilevers (MCLs) have been emerging as a sensitive tool for the detection of chemicals and bioorganisms. Because of their small size, lightweight, and high surface-to-volume ratio, MCL-based sensors improve our capability to detect and identify biological agents by orders of magnitude. A biosensor is a device for the detection of an analyte that combines a biological component with a physicochemical detector component. The MCL biosensors have recently been reviewed in several papers. All of these papers were organized based on the sensing biological elements (antibody, enzyme, proteins, etc.) for recognition of analytes. In this review, we intend to summarize the microcantilever biosensors in a format of each specific chemical and bioorganism species to make information on individual biosensors easily accessible. We did this to aid researchers to locate relevant references.  相似文献   

13.
This review paper outlines the important issues with regards to the development of biosensors for the monitoring of biological warfare agents (BWAs) starting with the basic components of biosensors and the features of BWAs, which are compatible with detection using biological recognition molecules. The advantages and limitations of biosensors are discussed followed by the current state of the art in biosensors for detecting BWAs. Finally the developments required to enable biosensors to become more effective at providing early warning of possible biological attack and advances towards these developments are covered.  相似文献   

14.
《Electroanalysis》2017,29(5):1206-1213
Organophosphorus (OP) pesticides are primarily used as insecticides and chemical warfare agents worldwide. Due to their impact on the environment and health, it is important to develop prompt and accurate pesticide analysis method. This review addresses recent advances and new trends in nanotechnology‐based biosensors for biological monitoring of exposures to OP pesticides and nerve agents. In order to determine them, we have to find the corresponding biomarkers. In 1989, the national academy of sciences (NAS)divided biomarkers into the following three categories: biomarker of exposure, biomarker of effect and biomarker of susceptibility (Figure 1A). The unique chemical and physical properties of nanomaterial have paved the way to new and improved sensing devices, in general, and electrochemical/optical biosensors, in particular. In this paper, background information and a general overview of electrochemical/immunoassay detection techniques are provided. Various nanomaterial labels are discussed. Usually nanomaterials can be roughly divided into nanometer powder, nanometer fiber, nanometer film, nanometer block and so on four classes, such as colloidal gold, semiconductor nanoparticles and carbon nanomaterial (Figure 1B). In addition, we discuss some future considerations and opportunities for advancing the use of biosensors for environmental and health studies.  相似文献   

15.
Chemiluminescence (CL) is an important method for quantification and analysis of various macromolecules. A wide range of CL agents such as luminol, hydrogen peroxide, fluorescein, dioxetanes and derivatives of oxalate, and acridinium dyes are used according to their biological specificity and utility. This review describes the application of luminol chemiluminescence (LCL) in forensic, biomedical, and clinical sciences. LCL is a very useful detection method due to its selectivity, simplicity, low cost, and high sensitivity. LCL has a dynamic range of applications, including quantification and detection of macro and micromolecules such as proteins, carbohydrates, DNA, and RNA. Luminol-based methods are used in environmental monitoring as biosensors, in the pharmaceutical industry for cellular localization and as biological tracers, and in reporter gene-based assays and several other immunoassays. Here, we also provide information about different compounds that may enhance or inhibit the LCL along with the effect of pH and concentration on LCL. This review covers most of the significant information related to the applications of luminol in different fields.  相似文献   

16.
Optical biosensors have been commercially available since the early 1990s, and have been used extensively in many areas of research in the life sciences. Optical biosensors developed for drug analysis generally exploit the high selectivity of the antigen-antibody and drug-protein interaction. Optical biosensors can be made based on optical diffraction or electro-chemiluminescence. High-throughput screening, (HTS) which includes automated preparation of a large number of samples and then screening of their properties in multi-well plates, improves the efficiency of research in many scientific areas, e.g., catalyst screening, food processing, chemical synthesis, drug discovery, absorption, distribution, metabolism, and excretion and toxicological and cell based screening. The three most common detection techniques used in HTS are UV-VIS absorbance, fluorescence and luminescence. In this review, we summarize some recent trends and developments in the construction of optical chemical biosensors used in high-throughput screening of drugs. Also, we have included environmental, biological and other medical applications of biosensors.  相似文献   

17.
Palchetti I  Mascini M 《The Analyst》2008,133(7):846-854
Nucleic acid-based biosensors are finding increasing use for the detection of environmental pollution and toxicity. A biosensor is defined as a compact analytical device incorporating a biological or biologically-derived sensing element either integrated within or intimately associated with a physicochemical transducer. A nucleic acid-based biosensor employs as the sensing element an oligonucleotide, with a known sequence of bases, or a complex structure of DNA or RNA. Nucleic acid biosensors can be used to detect DNA/RNA fragments or either biological or chemical species. In the first application, DNA/RNA is the analyte and it is detected through the hybridization reaction (this kind of biosensor is also called a genosensor). In the second application, DNA/RNA plays the role of the receptor of specific biological and/or chemical species, such as target proteins, pollutants or drugs. Recent advances in the development and applications of nucleic acid-based biosensors for environmental application are reviewed in this article with special emphasis on functional nucleic acid elements (aptamers, DNAzymes, aptazymes) and lab-on-a-chip technology.  相似文献   

18.
Aptamers are short length, single-stranded DNA or RNA affinity molecules which interact with any desired targets such as biomarkers, cells, biological molecules, drugs or chemicals with high sensitivity. They have been extensively employed for medical applications due to having more advantages than the antibodies such as easier preparation and modification, higher stability, lower batch-to-batch variability and cost. Moreover, aptamers can be easily integrated efficiently with sensors, biosensors, actuators and other devices. In this review article, different applications of aptamers for biological and chemical molecules detection within the scope of electrochemical methods were presented with recent studies. In addition, the present status and future perspectives for highly-effective aptasensors for specific and selective analyte detection were discussed. As in stated throughout the review, combining of extraordinary properties of aptamers with the electrochemical-based biosensors could have improved the sensitivity of the assay and reduced limit of detection.  相似文献   

19.
黎振华  诸颖  陈静  宋世平 《应用化学》2022,39(5):736-748
电化学生物传感器具有灵敏度高、便携性好、响应快速和易于集成等优点,在临床检测方面有很大应用潜力,并在可穿戴健康监测领域得到了快速发展。但在实际临床生物样本检测中,非靶标生物物质会在电极表面产生非特异性吸附(即生物污染),影响了电化学生物传感器的性能。因此,构建具有防污染能力的传感界面(抗污界面),防止非靶标物质吸附到电极表面,对于扩大电化学生物传感器的实际应用范围,实现在复杂生物样本中的检测至关重要。本文概述了物理、化学和生物抗污电极界面的构建及其在临床相关生物标志物检测中的应用,为电化学生物传感器实际应用性能的提升提供技术参考,并通过对界面抗污原理和存在问题的探讨,对抗污界面发展前景和未来趋势予以展望。  相似文献   

20.
Reporter gene bioassays in environmental analysis   总被引:2,自引:0,他引:2  
In parallel to the continuous development of increasingly more sophisticated physical and chemical analytical technologies for the detection of environmental pollutants, there is a progressively more urgent need also for bioassays which report not only on the presence of a chemical but also on its bioavailability and its biological effects. As a partial fulfillment of that need, there has been a rapid development of biosensors based on genetically engineered bacteria. Such microorganisms typically combine a promoter-operator, which acts as the sensing element, with reporter gene(s) coding for easily detectable proteins. These sensors have the ability to detect global parameters such as stress conditions, toxicity or DNA-damaging agents as well as specific organic and inorganic compounds. The systems described in this review, designed to detect different groups of target chemicals, vary greatly in their detection limits, specificity, response times and more. These variations reflect on their potential applicability which, for most of the constructs described, is presently rather limited. Nevertheless, present trends promise that additional improvements will make microbial biosensors an important tool for future environmental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号