首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the parameters a n , b n of a Jacobi matrix have a complete asymptotic expansion
$a_n^2 - 1 = \sum\limits_{k = 1}^{K(R)} {p_k (n)\mu _k^{ - 2n} + O(R^{ - 2n} ),} b_n = \sum\limits_{k = 1}^{K(R)} {p_k (n)\mu _k^{ - 2n + 1} + O(R^{ - 2n} )} $
, where 1 < |µj| < R for j ? K(R) and all R, if and only if the Jost function, u, written in terms of z (where E = z + z ?1) is an entire meromorphic function. We relate the poles of u to the µj’s.
  相似文献   

2.
We solve the problem of describing the solutions of E-operators of order μ ≥ 1 admitting at z = 0 a basis over C of local solutions which are all holomorphic at z = 0. We prove that the components of such a basis can be taken of the form \(\sum {_{j = 1}^\ell } {P_j}\left( z \right){e^{{\beta _{{j^z}}}}}\), where ? ≤ μ, β 1,...,β ?\(\overline {\mathbb{Q}} \) x, and P 1(z),..., P ?(z) ∈ \(\overline {\mathbb{Q}} \)[z].  相似文献   

3.
The uncertain system
$x_{n + 1} = A_n x_n , n = 0,1,2, \ldots ,$
is considered, where the coefficients a ij (n) of the m×m matrix A n are functionals of any nature subject to the constraints
$\begin{array}{*{20}c} {\left| {a_{i,i} (n)} \right| \leqslant \alpha _ * < 1,} \\ {\left| {a_{i,j} (n)} \right| \leqslant \alpha _0 for j \geqslant i + 1,} \\ {\left| {a_{i,j} (n)} \right| \leqslant \delta for j < i.} \\ \end{array} $
Such systems include, in particular, switched-type systems, whose matrix A can take values in a given finite set.By using a special Lyapunov function, a bound δ ≤ δ(α0*) ensuring the global asymptotic stability of the system is found. In particular, the system is stable if the last inequality is replaced by a i,j (n) = 0 for j < i.It is shown that pulse-width modulated systems reduce to the uncertain systems under consideration; moreover, in the case of a pulse-width modulation of the first kind, the coefficients of the matrix A are functions of x(n), and in the case of a modulation of the second kind, they are functionals.  相似文献   

4.
We consider the following Toda system where γ i >?1, δ 0 is Dirac measure at 0, and the coefficients a ij form the standard tri-diagonal Cartan matrix. In this paper, (i) we completely classify the solutions and obtain the quantization result:
$\sum_{j=1}^n a_{ij}\int_{\mathbb{R}^2}e^{u_j} dx = 4\pi(2+\gamma _i+\gamma_{n+1-i}), \quad\forall\;1\leq i \leq n.$
This generalizes the classification result by Jost and Wang for γ i =0, \(\forall\;1\leq i\leq n\). (ii) We prove that if γ i +γ i+1+?+γ j ?? for all 1≤ijn, then any solution u i is radially symmetric w.r.t. 0. (iii) We prove that the linearized equation at any solution is non-degenerate. These are fundamental results in order to understand the bubbling behavior of the Toda system.
  相似文献   

5.
We consider the nonlinear quasiperiodic Pfaff system
$$\frac{{\partial x}}{{\partial t_j }} = F^{(j)} (t,x) + G^{(j)} (t,x)(j = 1,...,m).$$
Let K (j) be a frequency basis with respect to t j of the functions F (1),...,F (m), and let L (j) be a frequency basis with respect to t j of the functions G (1),...,G (m). Suppose that the set K (j)L (j) of numbers is rationally linearly independent. We obtain necessary and sufficient conditions for the existence of quasiperiodic solutions with frequency bases L (1),..., L (m).
  相似文献   

6.
For a polynomial P(z) of degree n having no zeros in |z| < 1, it was recently proved in [9] that
$$\left| {{z^s}{P^{\left( s \right)}}\left( z \right) + \beta \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{{{2^s}}}P\left( z \right)} \right| \leqslant \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{2}\left( {\left| {1 + \frac{\beta }{{{2^s}}}} \right| + \left| {\frac{\beta }{{{2^s}}}} \right|} \right)\mathop {\max }\limits_{\left| z \right| = 1} \left| {P\left( z \right)} \right|$$
for every β ∈ C with |β| ≤ 1, 1 ≤ sn and |z| = 1. In this paper, we obtain the L p mean extension of the above and other related results for the sth derivative of polynomials.
  相似文献   

7.
An exponential polynomial of order q is an entire function of the form
$$g(z) = {P_1}(z){e^{{Q_1}(z)}} + ...{P_k}(z){e^{{Q_k}(z)}},$$
where the coefficients Pj(z),Qj(z) are polynomials in z such that
$$\max \{ deg({Q_j})\} = q.$$
It is known that the majority of the zeros of a given exponential polynomial are in domains surrounding finitely many critical rays. The shape of these domains is refined by showing that in many cases the domains can approach the critical rays asymptotically. Further, it is known that the zeros of an exponential polynomial are always of bounded multiplicity. A new sufficient condition for the majority of zeros to be simple is found. Finally, a division result for a quotient of two exponential polynomials is proved, generalizing a 1929 result by Ritt in the case q = 1 with constant coefficients. Ritt’s result is closely related to Shapiro’s conjecture that has remained open since 1958.
  相似文献   

8.
In this paper, we consider the two-dimensional Hausdorff operators on the power weighted Hardy space H_(|x|α)~1(R~2) ( -1 ≤α≤0), defined by H_(Φ,A)f(x)=∫R~2Φ(u)f(A(u)x)du,where Φ∈L_loc~1(R~2),A(u) = (α_(ij)(u))_(i,j=1)~2 is a 2×2 matrix, and each α_(i,j) is a measurablefunction.We obtain that HΦ,A is bounded from H_(|x|~α)~1(R~2) ( -1≤α≤0) to itself, if∫R2|Φ(u)‖det A~(-1)(u)|‖A(u)‖~(-α)ln(1+‖A~(-1)(u)‖~2/|det A~(-1)(u)|)du∞.This result improves some known theorems, and in some sense it is sharp.  相似文献   

9.
A finite p-group P is called resistant if, for any finite group G having P as a Sylow p-group, the normalizer N G (P) controls p-fusion in G. Let P be a central extension as
$$1 \to {\mathbb{Z}_{{p^m}}} \to P \to {\mathbb{Z}_p} \times \cdots {\mathbb{Z}_p} \to 1,$$
and |P′| ≤ p, m ≥ 2. The purpose of this paper is to prove that P is resistant.
  相似文献   

10.
Huixue Lao 《Acta Appl Math》2010,110(3):1127-1136
Let L(sym j f,s) be the jth symmetric power L-function attached to a holomorphic Hecke eigencuspform f(z) for the full modular group, and \(\lambda_{\mathrm{sym}^{j}f}(n)\) denote its nth coefficient. In this paper we are able to prove that
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{3}f}(n)\bigg|^{2}dy=O\bigl(x^{2}\bigr),$
and
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{4}f}(n)\bigg|^{2}dy=O\bigl(x^{\frac{11}{5}}\log x\bigr).$
  相似文献   

11.
We consider the Schrödinger operator
$$ \text{-} \frac{d^{2}}{d x^{2}} + V {\text{on an interval}}~~[a,b]~{\text{with Dirichlet boundary conditions}},$$
where V is bounded from below and prove a lower bound on the first eigenvalue λ 1 in terms of sublevel estimates: if w V (y) = |{x ∈ [a, b] : V (x) ≤ y}|, then
$$\lambda_{1} \geq \frac{1}{250} \min\limits_{y > \min V}{\left( \frac{1}{w_{V}(y)^{2}} + y\right)}.$$
The result is sharp up to a universal constant if {x ∈ [a, b] : V(x) ≤ y} is an interval for the value of y solving the minimization problem. An immediate application is as follows: let \({\Omega } \subset \mathbb {R}^{2}\) be a convex domain and let \(u:{\Omega } \rightarrow \mathbb {R}\) be the first eigenfunction of the Laplacian ? Δ on Ω with Dirichlet boundary conditions on ?Ω. We prove
$$\| u \|_{L^{\infty}({\Omega})} \lesssim \frac{1}{\text{inrad}({\Omega})} \left( \frac{\text{inrad}({\Omega})}{\text{diam}({\Omega})} \right)^{1/6} \|u\|_{L^{2}({\Omega})},$$
which answers a question of van den Berg in the special case of two dimensions.
  相似文献   

12.
If f(z) is a weight \({k\in \frac{1}{2}\mathbb {Z}}\) meromorphic modular form on Γ0(N) satisfying
$f(z)=\sum_{n\geq n_0} a_ne^{2\pi i mnz}, $
where \({m \nmid N,}\) then f is constant. If k ≠ 0, then f = 0. Atkin and Lehner [2] derived the theory of integer weight newforms from this fact. We use the geometric theory of modular forms to prove the analog of this fact for modular forms modulo ?. We show that the same conclusion holds if gcd(N ?,m) = 1 and the nebentypus character is trivial at ?. We use this to study the parity of the partition function and the coefficients of Klein’s j-function.
  相似文献   

13.
We develop conditions on a Sobolev function \(\psi \in W^{m,p}({\mathbb{R}}^d)\) such that if \(\widehat{\psi}(0) = 1\) and ψ satisfies the Strang–Fix conditions to order m ? 1, then a scale averaged approximation formula holds for all \(f \in W^{m,p}({\mathbb{R}}^d)\) :
$ f(x) = \lim_{J \to \infty} \frac{1}{J} \sum_{j=1}^{J} \sum_{k \in {{\mathbb{Z}}}^d} c_{j,k}\psi(a_j x - k) \quad {\rm in} W^{m, p}({{\mathbb{R}}}^d).$
The dilations { a j } are lacunary, for example a j =  2 j , and the coefficients c j,k are explicit local averages of f, or even pointwise sampled values, when f has some smoothness. For convergence just in \({W^{m - 1,p}({\mathbb{R}}^d)}\) the scale averaging is unnecessary and one has the simpler formula \(f(x) = \lim_{j \to \infty} \sum_{k \in {\mathbb{Z}}^d} c_{j,k}\psi(a_j x - k)\) . The Strang–Fix rates of approximation are recovered. As a corollary of the scale averaged formula, we deduce new density or “spanning” criteria for the small scale affine system \(\{\psi(a_j x - k) : j > 0, k \in {\mathbb{Z}}^d \}\) in \(W^{m,p}({\mathbb{R}}^d)\) . We also span Sobolev space by derivatives and differences of affine systems, and we raise an open problem: does the Gaussian affine system span Sobolev space?
  相似文献   

14.
We investigate the nonnegative solutions of the system involving the fractional Laplacian:
$$\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {( - \Delta )^\alpha u_i (x) = f_i (u),} & {x \in \mathbb{R}^n , i = 1,2, \ldots ,m,} \\ \end{array} } \\ {u(x) = (u_1 (x),u_2 (x), \ldots ,u_m (x)),} \\ \end{array} } \right.$$
where 0 < α < 1, n > 2, f i (u), 1 ≤ im, are real-valued nonnegative functions of homogeneous degree p i ≥ 0 and nondecreasing with respect to the independent variables u 1, u 2,..., u m . By the method of moving planes, we show that under the above conditions, all the positive solutions are radially symmetric and monotone decreasing about some point x 0 if p i = (n + 2α)/(n ? 2α) for each 1 ≤ im; and the only nonnegative solution of this system is u ≡ 0 if 1 < p i < (n + 2α)/(n ? 2α) for all 1 ≤ im.
  相似文献   

15.
We give expansions about the Gumbel distribution in inverse powers of n and log n for Mn, the maximum of a sample size n or n + 1 when the j-th observation is μ(j/n) + ej, μ is any smooth trend function and the residuals {ej } are independent and identically distributed with P(e r) ≈ exp(-δx)xd0∑∞k=1ckx-kβ as x →∞. We illustrate practical value of the expansions using simulated data sets.  相似文献   

16.
Let P(z) be a polynomial of degreen which does not vanish in ¦z¦ <k, wherek > 0. Fork ≤ 1, it is known that
$$\mathop {\max }\limits_{|z| = 1} |P'(z)| \leqslant \frac{n}{{1 + k^n }}\mathop {\max }\limits_{|z| = 1} |P(z)|$$
, provided ¦P’(z)¦ and ¦Q’(z)¦ become maximum at the same point on ¦z¦ = 1, where\(Q(z) = z^n \overline {P(1/\bar z)} \). In this paper we obtain certain refinements of this result. We also present a refinement of a generalization of the theorem of Tu?an.
  相似文献   

17.
Any analytic signal fa(e~(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e~(it)) = e~(iN0t)M∑k=0a_k~(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0~(2π)|1+H∑k=1h_k~(eikt)|~2|fa(e~(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e~(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e~(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e~(it))|~2,the exact solution of the minimum-phase signal of fa(e~(it)) can be extracted out. On the other hand, we show that the Fourier system e~(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e~(it)) :=((1-|α_k|~2e~(it))/(1-α_ke~(it))~(1/2)∏_(j=1)~(k-1)(e~(it)-α_j/(1-α_je~(it))~(1/2), k = 1, 2,..., r_0(e~(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out.  相似文献   

18.
Let J be the Lévy density of a symmetric Lévy process in \(\mathbb {R}^{d}\) with its Lévy exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local operator
$$\mathcal{L}^{\kappa}f(x):= \lim_{{\varepsilon} \downarrow 0} {\int}_{\{z \in \mathbb{R}^{d}: |z|>{\varepsilon}\}} (f(x+z)-f(x))\kappa(x,z)J(z)\, dz\, , $$
where κ(x, z) is a Borel function on \(\mathbb {R}^{d}\times \mathbb {R}^{d}\) satisfying 0 < κ 0κ(x, z) ≤ κ 1, κ(x, z) = κ(x,?z) and |κ(x, z) ? κ(y, z)|≤ κ 2|x ? y| β for some β ∈ (0, 1]. We construct the heat kernel p κ (t, x, y) of \(\mathcal {L}^{\kappa }\), establish its upper bound as well as its fractional derivative and gradient estimates. Under an additional weak upper scaling condition at infinity, we also establish a lower bound for the heat kernel p κ .
  相似文献   

19.
Let Γn, n ≥ 2, denote the symmetrized polydisc in ?n, and Γ1 be the closed unit disc in ?. We provide some characterizations of elements in Γn. In particular, an element (s1,..., sn?1, p) ∈ ?n is in Γn if and only if \({s_j} = {\beta _j} + \overline {{\beta _{n - j}}}p\), j = 1,..., n ? 1, for some (β1,..., βn?1) ∈ Γn?1, and |p| ≤ 1.  相似文献   

20.
For any prime number p let Ωp be the p-adic counterpart of the complex numbers C. In this paper we investigate the class of p-adic UHF Banach algebras. A p-adic UHF Banach algebra is any unital p-adic Banach algebra A of the form \(A = \overline {U{M_n}} \), where (Mn) is an increasing sequence of p-adic Banach subalgebras of M such that each Mn is generated over Ωp by an algebraic system of matrix units {e ij ( n) | 1 ≤ i, jpn }. The main result is that the supernatural number associated to a p-adic TUHF Banach algebra is an invariant of the algebra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号