首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The symmetric group $\operatorname{Sym}(d)$ acts on the Cartesian product (S 2) d by coordinate permutation, and the quotient space $(S^{2})^{d}/\operatorname{Sym}(d)$ is homeomorphic to the complex projective space ?P d . We used the case d=2 of this fact to construct a 10-vertex triangulation of ?P 2 earlier. In this paper, we have constructed a 124-vertex simplicial subdivision $(S^{2})^{3}_{124}$ of the 64-vertex standard cellulation $(S^{2}_{4})^{3}$ of (S 2)3, such that the $\operatorname{Sym}(3)$ -action on this cellulation naturally extends to an action on $(S^{2})^{3}_{124}$ . Further, the $\operatorname{Sym}(3)$ -action on $(S^{2})^{3}_{124}$ is ??good??, so that the quotient simplicial complex $(S^{2})^{3}_{124}/\operatorname{Sym}(3)$ is a 30-vertex triangulation $\mathbb{C}P^{3}_{30}$ of ?P 3. In other words, we have constructed a simplicial realization $(S^{2})^{3}_{124} \to\mathbb{C} P^{3}_{30}$ of the branched covering (S 2)3???P 3.  相似文献   

2.
A broadcast on a nontrivial connected graph G is a function ${f:V \longrightarrow \{0, \ldots,\operatorname{diam}(G)\}}$ such that for every vertex ${v \in V(G)}$ , ${f(v) \leq e(v)}$ , where ${\operatorname{diam}(G)}$ denotes the diameter of G and e(v) denotes the eccentricity of vertex v. The broadcast independence number is the maximum value of ${\sum_{v \in V} f(v)}$ over all broadcasts f that satisfy ${d(u,v) > \max \{f(u), f(v)\}}$ for every pair of distinct vertices u, v with positive values. We determine this invariant for grid graphs ${G_{m,n} = P_m \square P_n}$ , where ${2 \leq m \leq n}$ and □ denotes the Cartesian product. We hereby answer one of the open problems raised by Dunbar et al. in (Discrete Appl Math 154:59–75, 2006).  相似文献   

3.
When W is a finite reflection group, the noncrossing partition lattice $\operatorname{NC}(W)$ of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in $\operatorname{NC}(W)$ as a generalized Fu?–Catalan number, depending on the invariant degrees of W. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of $\operatorname{NC}(W)$ as fibers of a Lyashko–Looijenga covering ( $\operatorname{LL}$ ), constructed from the geometry of the discriminant hypersurface of W. We study algebraically the map $\operatorname{LL}$ , describing the factorizations of its discriminant and its Jacobian. As byproducts, we generalize a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorizations of a Coxeter element of W.  相似文献   

4.
We give a new generalization of the spt-function of G.E. Andrews, namely $\operatorname {Spt}_{j}(n)$ , and give its combinatorial interpretation in terms of successive lower-Durfee squares. We then generalize the higher order spt-function $\operatorname {spt}_{k}(n)$ , due to F.G. Garvan, to ${}_{j\!}\operatorname {spt}_{k}(n)$ , thus providing a two-fold generalization of $\operatorname {spt}(n)$ , and give its combinatorial interpretation. Lastly, we show how the positivity of j spt k (n) can be used to generalize Garvan’s inequality between rank and crank moments to the moments of j-rank and (j+1)-rank.  相似文献   

5.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

6.
For the classical space of functions with bounded mean oscillation, it is well known that $\operatorname{VMO}^{**} = \operatorname{BMO}$ and there are many characterizations of the distance from a function f in $\operatorname{BMO}$ to $\operatorname{VMO}$ . When considering the Bloch space, results in the same vein are available with respect to the little Bloch space. In this paper such duality results and distance formulas are obtained by pure functional analysis. Applications include general Möbius invariant spaces such as Q K -spaces, weighted spaces, Lipschitz–Hölder spaces and rectangular $\operatorname{BMO}$ of several variables.  相似文献   

7.
8.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

9.
Let ${K=\mathbb{Q}(\theta)}$ be an algebraic number field with θ in the ring A K of algebraic integers of K and f(x) be the minimal polynomial of θ over the field ${\mathbb{Q}}$ of rational numbers. For a rational prime p, let ${\bar{f}(x)\,=\,\bar{g}_{1}(x)^{e_{1}}....\bar{g}_{r}(x)^{e_{r}}}$ be the factorization of the polynomial ${\bar{f}(x)}$ obtained by reducing coefficients of f(x) modulo p into a product of powers of distinct irreducible polynomials over ${\mathbb{Z}/p\mathbb{Z}}$ with g i (x) monic. Dedekind proved that if p does not divide [ ${A_{K}:\mathbb{Z}}$ [θ]], then ${pA_{K}=\wp_{1}^{e_{1}}\ldots\wp_{r}^{e_{r}}}$ , where ${\wp_{1},\ldots,\wp_{r}}$ are distinct prime ideals of A K , ${\wp_{i}=pA_{K}+g_{i}(\theta)A_{K}}$ having residual degree equal to the degree of ${\bar{g}_{i}(x)}$ . He also proved that p does not divide [ ${A_{K}:\mathbb{Z}}$ [θ]] if and only if for each i, either e i  = 1 or ${\bar{g}_{i}(x)}$ does not divide ${\bar{M}(x)}$ where ${M(x)=\frac{1}{p}(f(x)-g_{1}(x)^{e_{1}}....g_{r}(x)^{e_{r}})}$ . Our aim is to give a weaker condition than the one given by Dedekind which ensures that if the polynomial ${\bar{f}(x)}$ factors as above over ${\mathbb{Z}/p\mathbb{Z}}$ , then there are exactly r prime ideals of A K lying over p, with respective residual degrees ${\deg \bar {g}_{1}(x),...,\deg \bar {g}_{r}(x)}$ and ramification indices e 1, ..., e r . In this paper, the above problem has been dealt with in a more general situation when the base field is a valued field (K, v) of arbitrary rank and K(θ) is any finite extension of K.  相似文献   

10.
Let A be an expansive dilation on ${{\mathbb R}^n}$ and w a Muckenhoupt ${\mathcal A_\infty(A)}$ weight. In this paper, for all parameters ${\alpha\in{\mathbb R} }$ and ${p,q\in(0,\infty)}$ , the authors identify the dual spaces of weighted anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A;w)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A;w)}$ with some new weighted Besov-type and Triebel?CLizorkin-type spaces. The corresponding results on anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A; \mu)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A; \mu)}$ associated with ${\rho_A}$ -doubling measure??? are also established. All results are new even for the classical weighted Besov and Triebel?CLizorkin spaces in the isotropic setting. In particular, the authors also obtain the ${\varphi}$ -transform characterization of the dual spaces of the classical weighted Hardy spaces on ${{\mathbb R}^n}$ .  相似文献   

11.
Let $\mathcal{T}_{n}$ be the semigroup of all full transformations on the finite set X n ={1,2,…,n}. For 1≤rn, set $\mathcal {T}(n, r)=\{ \alpha\in\mathcal{T}_{n} | \operatorname{rank}(\alpha)\leq r\}$ . In this note we show that, for 2≤rn?2, any maximal regular subsemigroup of the semigroup $\mathcal{T} (n,r)$ is idempotent generated, but this may not happen in the semigroup $\mathcal{T}(n, n-1)$ .  相似文献   

12.
Let $G$ denote a closed, connected, self-adjoint, noncompact subgroup of $GL(n,\mathbb R )$ , and let $d_{R}$ and $d_{L}$ denote respectively the right and left invariant Riemannian metrics defined by the canonical inner product on $M(n,\mathbb R ) = T_{I} GL(n,\mathbb R )$ . Let $v$ be a nonzero vector of $\mathbb R ^{n}$ such that the orbit $G(v)$ is unbounded in $\mathbb R ^{n}$ . Then the function $g \rightarrow d_{R}(g, G_{v})$ is unbounded, where $G_{v} = \{g \in G : g(v) = v \}$ , and we obtain algebraically defined upper and lower bounds $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ for the asymptotic behavior of the function $\frac{log|g(v)|}{d_{R}(g, G_{v})}$ as $d_{R}(g, G_{v}) \rightarrow \infty $ . The upper bound $\lambda ^{+}(v)$ is at most 1. The orbit $G(v)$ is closed in $\mathbb R ^{n} \Leftrightarrow \lambda ^{-}(w)$ is positive for some w $\in G(v)$ . If $G_{v}$ is compact, then $g \rightarrow |d_{R}(g,I) - d_{L}(g,I)|$ is uniformly bounded in $G$ , and the exponents $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ are sharp upper and lower asymptotic bounds for the functions $\frac{log|g(v)|}{d_{R}(g,I)}$ and $\frac{log|g(v)|}{d_{L}(g,I)}$ as $d_{R}(g,I) \rightarrow \infty $ or as $d_{L}(g,I) \rightarrow \infty $ . However, we show by example that if $G_{v}$ is noncompact, then there need not exist asymptotic upper and lower bounds for the function $\frac{log|g(v)|}{d_{L}(g, G_{v})}$ as $d_{L}(g, G_{v}) \rightarrow \infty $ . The results apply to representations of noncompact semisimple Lie groups $G$ on finite dimensional real vector spaces. We compute $\lambda ^{+}$ and $\lambda ^{-}$ for the irreducible, real representations of $SL(2,\mathbb R )$ , and we show that if the dimension of the $SL(2,\mathbb R )$ -module $V$ is odd, then $\lambda ^{+} = \lambda ^{-}$ on a nonempty open subset of $V$ . We show that the function $\lambda ^{-}$ is $K$ -invariant, where $K = O(n,\mathbb R ) \cap G$ . We do not know if $\lambda ^{-}$ is $G$ -invariant.  相似文献   

13.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

14.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

15.
We prove that for each universal algebra ${(A, \mathcal{A})}$ of cardinality ${|A| \geq 2}$ and infinite set X of cardinality ${|X| \geq | \mathcal{A}|}$ , the X-th power ${(A^{X}, \mathcal{A}^{X})}$ of the algebra ${(A, \mathcal{A})}$ contains a free subset ${\mathcal{F} \subset A^{X}}$ of cardinality ${|\mathcal{F}| = 2^{|X|}}$ . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family ${\mathcal{I} \subset \mathcal{P}(X)}$ of cardinality ${|\mathcal{I}| = |\mathcal{P}(X)|}$ in the Boolean algebra ${\mathcal{P}(X)}$ of subsets of an infinite set X.  相似文献   

16.
It is shown that a system of n second order ordinary differential equations that possess 2(n?1) symmetries of certain type necessarily has maximal symmetry $\frak{sl}(n+2,\mathbb{R})$ . Further, it is shown for non-linearizable systems containing a subalgebra of symmetries isomorphic to $\frak{sl}(n-1,\mathbb{R})$ the dimension of the symmetry algebra $\mathcal{L}$ is dn 2?1. Examples showing that the upper bound is sharp are given.  相似文献   

17.
We give a general construction leading to different non-isomorphic families $\varGamma_{n,q}(\mathcal{K})$ of connected q-regular semisymmetric graphs of order 2q n+1 embedded in $\operatorname{PG}(n+1,q)$ , for a prime power q=p h , using the linear representation of a particular point set $\mathcal{K}$ of size q contained in a hyperplane of $\operatorname{PG}(n+1,q)$ . We show that, when $\mathcal{K}$ is a normal rational curve with one point removed, the graphs $\varGamma_{n,q}(\mathcal{K})$ are isomorphic to the graphs constructed for q=p h in Lazebnik and Viglione (J. Graph Theory 41, 249–258, 2002) and to the graphs constructed for q prime in Du et al. (Eur. J. Comb. 24, 897–902, 2003). These graphs were known to be semisymmetric but their full automorphism group was up to now unknown. For qn+3 or q=p=n+2, n≥2, we obtain their full automorphism group from our construction by showing that, for an arc $\mathcal{K}$ , every automorphism of $\varGamma_{n,q}(\mathcal{K})$ is induced by a collineation of the ambient space $\operatorname{PG}(n+1,q)$ . We also give some other examples of semisymmetric graphs $\varGamma _{n,q}(\mathcal{K})$ for which not every automorphism is induced by a collineation of their ambient space.  相似文献   

18.
19.
We treat the partial regularity of locally bounded local minimizers $u$ for the $p(x)$ -energy functional $$\begin{aligned} \mathcal{E }(v;\Omega ) = \int \left( g^{\alpha \beta }(x)h_{ij}(v) D_\alpha v^i (x) D_\beta v^j (x) \right) ^{p(x)/2} dx, \end{aligned}$$ defined for maps $v : \Omega (\subset \mathbb R ^m) \rightarrow \mathbb R ^n$ . Assuming the Lipschitz continuity of the exponent $p(x) \ge 2$ , we prove that $u \in C^{1,\alpha }(\Omega _0)$ for some $\alpha \in (0,1)$ and an open set $\Omega _0 \subset \Omega $ with $\dim _\mathcal{H }(\Omega \setminus \Omega _0) \le m-[\gamma _1]-1$ , where $\dim _\mathcal{H }$ stands for the Hausdorff dimension, $[\gamma _1]$ the integral part of $\gamma _1$ , and $\gamma _1 = \inf p(x)$ .  相似文献   

20.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号