首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ln6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)(8) (Ln = Nd, Eu, Tb, Dy) compounds are obtained as the final hydrolysis products of lanthanide triiodides in an aqueous solution. Their X-ray crystal structure features a body-centered arrangement of oxygen-centered {Ln6X8}8+ cluster cores: [Nd6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1310.4(3) pm, b = 1502.1(3) pm, c = 1514.9(3) pm, 3384 reflections with I0 > 2sigma(I0), R1 = 0.0340, wR2 = 0.0764, GOF = 1.022, T = 298(2) K], [Eu6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1306.6(2) pm, b = 1498.15(19) pm, c = 1499.41(18) pm, 4262 reflections with I0 > 2sigma(I0), R1 = 0.0540, wR2 = 0.0860, GOF = 0.910, T = 298(2) K], [Tb6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 4182 reflections with I0 > 2sigma(I0), R1 = 0.0395, wR2 = 0.0924, GOF = 1.000, T = 298(2) K], and [Dy6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 3329 reflections with I0 > 2sigma(I0), R1 = 0.0389, wR2 = 0.0801, GOF = 0.992, T = 298(2) K.  相似文献   

2.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

3.
A new route for organic polyoxometallic clusters describes the first dumb-bell-like organic polyoxozirconium hydroxide [[(Cp*Zr)4(mu5-O)(mu3-O)2(mu-OH)4]2Zr(mu-O)4] x 2C7H8 (2; Cp* = C5Me5) involving the treatment of the Br?nsted acidic organozirconium hydroxide [(Cp*Zr)6(mu4-O)(mu-O)4(mu-OH)8] x 2C7H8 (1) with organozirconium compounds.  相似文献   

4.
The synthesis, crystal structure, and magnetic properties of two trinuclear oxo-centered carboxylate complexes are reported and discussed: [Cr3(mu3-O)(mu2-PhCOO)6(H2O)3]NO3.4H2O.2CH3OH (1) and [Cr3(mu3-O)(mu2-PhCOO)2(mu2-OCH2CH3)2(bpy)2(NCS)3] (2). For both complexes the crystal system is monoclinic, with space group C2/c for 1 and P1/n for 2. The structure of complex 1 consists of discrete trinuclear cations, associated NO3- anions, and lattice methanol and water molecules. The structure of complex 2 is built only by neutral discrete trinuclear entities. The most important feature of 2 is the unusual skeleton of the [Cr3O] core due to the lack of peripheral bridging ligands along one side of the triangular core, which is unique among the structurally characterized (mu3-oxo)trichromium(III) complexes. Magnetic measurements were performed in the 2-300 K temperature range. For complex 1, in the high-temperature region (T > 8 K), experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J12S1S2 - 2J13S1S3 - 2J23S2S3 (J12 = J13 = J23) with Jij = -10.1 cm(-1), g = 1.97, and TIP = 550 x 10(-6) emu mol(-1). The antisymmetric exchange interaction plays an important role in the magnetic behavior of the system, so in order to fit the experimental magnetic data at low temperature, a new magnetic model was used where this kind of interaction was also considered. The resulting fitting parameters are the following: Gzz = 0.25 cm(-1), delta = 2.5 cm(-1), and TIP = 550 x 10(-6) emu mol(-1). For complex 2, the experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J1(S1S2 + S1S3) - 2J2(S2S3) with J1 = -7.44 cm(-1), J2 = -51.98 cm(-1), and g = 1.99. The magnetization data allows us to deduce the ground term of S = 1/2, characteristic of equilateral triangular chromium(III) for complex 1 and S = 3/2 for complex 2, which is confirmed by EPR measurements.  相似文献   

5.
A cyclic voltammogram of aqueous 0.1 mol dm(-3) triflic acid solutions of the d6 bioxo-capped M-M bonded cluster [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ at a glassy carbon electrode at 25 degrees C gives rise to an irreversible 3e- cathodic wave to a d9 Mo(III)3 species at -0.8 V vs. SCE which on the return scan gives rise to two anodic waves at +0.05 V vs. SCE (E(1/2), 1e- reversible to d8 Mo(III)2Mo(IV)) and +0.48 V vs. SCE (2e- irreversible back to d6 Mo(IV)3). The number of electrons passed at each redox wave has been confirmed by redox titration and controlled potential electrolysis which resulted in 90% recovery of [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ following electrochemical re-oxidation at +0.8 V. A corresponding CV study of the d8 monoxo-capped W(III)2W(IV) cluster [W3(mu3-O)(O2CCH3)6(H2O)3]2+ gives rise to a reversible 1e- cathodic process at -0.92 V vs. SCE to give the d9 W(III)3 species [W3(mu3-O)(O2CCH3)6(H2O)3]+; the first authentic example of a W(III) complex with coordinated water ligands. However the cluster is too unstable (O2/water sensitive) to allow isolation. Comparisons with the cv study on [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ suggest irreversible reduction of this complex to monoxo-capped [Mo(III)3(mu3-O)(O2CCH3)6(H2O)3]+ followed by reversible oxidation to its d8 counterpart [Mo3(mu3-O)(O2CCH3)6(H2O)3]2+ (Mo(III)2Mo(IV)) and finally irreversible oxidation back to the starting bioxo-capped cluster. Exposing the d9 Mo(III)3 cluster to air (O2) however gives a different final product with evidence of break up of the acetate bridged framework. Corresponding redox processes on d6 [W3(mu3-O)2(O2CCH3)6(H2O)3]2+ are too cathodic to allow similar generation of the monoxo-capped W(III)3 and W(III)2W(IV) clusters at the electrode surface.  相似文献   

6.
Exposing [Bi(OR)3(toluene)]2 (1, R = OC6F5) to different solvents leads to the formation of larger polymetallic bismuth oxo alkoxides via ether elimination/oligomerization reactions. Three different compounds were obtained depending upon the conditions: Bi4(mu 4-O)(mu-OR)6(mu 3-OBi(mu-OR)3)2(C6H5CH3) (2), Bi8(mu 4-O)2(mu 3-O)2(mu 2-OR)16 (3), Bi6(mu 3-O)4(mu 3-OR)(mu 3-OBi(OR)4)3 (4). Compounds 2 and 3 can also be synthesized via an alcoholysis reaction between BiPh3 and ROH in refluxing dichloromethane or chloroform. Related oxo complexes NaBi4(mu 3-O)2(OR)9(THF)2 (5) and Na2Bi4(mu 3-O)2(OR)10(THF)2 (6) were obtained from BiCl3 and NaOR in THF. The synthesis of 1 and Bi(OC6Cl5)3 via salt elimination was successful when performed in toluene as solvent. For compounds 2-6 the single-crystal X-ray structures were determined. Variable-temperature NMR spectra are reported for 2, 3, and 5.  相似文献   

7.
A comparison is made between the structural, spectroscopic, electrochemical, and magnetic properties of pyrazolate versus carboxylate complexes [Fe3(mu3(mu3O)(mu-LL)6Cl3]2- containing the Fe3(mu3-O)-motif. While the Fe3(mu3-O)-cores are structurally indistinguishable in the two types of complexes, their magnetic properties deviate from the expected values as a result of a through-pyrazole contribution to the overall antiferromagnetic exchange with J1/hc = -80.1 cm(-1) and J2/hc = -72.4 cm(-1), or J1/hc = 70.6 cm(-1) and J2/hc = -80.8 cm(-1), (Hex = -J1(S1S2 + S2S3) - J2S1S3). The magnetic properties of the pyrazolate complexes are further tuned by an antisymmetric exchange interaction term.  相似文献   

8.
The use of salicylaldehyde oxime (H2salox) in iron(III) carboxylate chemistry has yielded two new hexanuclear compounds [Fe6(mu3-O)2(O2CPh)10(salox)2(L)2].xMeCN.yH2O [L = MeCONH2, x = 6, y = 0 (1); L = H2O, x = 2, y = 3 (2)]. Compound 1 crystallizes in the triclinic space group P with (at 25 degrees C) a = 13.210(8) A, b = 13.87(1) A, c = 17.04(1) A, alpha = 105.79(2) degrees , beta = 96.72(2) degrees , gamma = 116.69(2) degrees , V = 2578.17(2) A(3), and Z = 1. Compound 2 crystallizes in the monoclinic space group C2/c with (at 25 degrees C) a = 21.81(1) A, b = 17.93(1) A, c = 27.72(1) A, beta = 111.70(2) degrees , V = 10070(10) A(3), and Z = 4. Complexes 1 and 2 contain the [Fe6(mu3-O)2(mu2-OR)2]12+ core and can be considered as two [Fe3(mu3-O)] triangular subunits linked by two mu2-oximato O atoms of the salox2- ligands, which show the less common mu3:eta1:eta2:eta1 coordination mode. The benzoato ligands are coordinated through the usual syn,syn-mu2:eta1:eta1 mode. The terminal MeCONH2 ligand in 1 is the hydrolysis product of the acetonitrile solvent in the presence of the metal ions. M?ssbauer spectra from powdered samples of 2 give rise to two well-resolved doublets with an average isomer shift consistent with that of high-spin Fe(III) ions. The two doublets, at an approximate 1:2 ratio, are characterized by different quadrupole splittings and are assigned to the nonequivalent Fe(III) ions of the cluster. Magnetic measurements of 2 in the 2-300 K temperature range reveal antiferromagnetic interactions between the Fe(III) ions, stabilizing an S = 0 ground state. NMR relaxation data have been used to investigate the energy separation between the low-lying states, and the results are in agreement with the susceptibility data.  相似文献   

9.
The nine-membered [-Cu(II)-N-N-](3) ring of trimeric copper-pyrazolato complexes provides a sturdy framework on which water is twice deprotonated in consecutive steps, forming mu(3)-OH and mu(3)-O species. In the presence of excess chlorides the mu(3)-O(H) ligand is replaced by two mu(3)-Cl ions. The interconversion of mu(3)-OH and mu(3)-O and the exchange of mu(3)-O(H) and mu(3)-Cl are reversible, and the three species involved have been structurally characterized: [PPN][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(thf)].CH(2)Cl(2) (1a), monoclinic P2(1)/n, a = 10.055(2) A, b = 35.428(5) A, c = 15.153(2) A, beta = 93.802(3) degrees, V = 5386(1) A(3), Z = 4; [Bu(4)N][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)] (1b), triclinic P-1, a = 9.135(2) A, b = 13.631(2) A, c = 14.510(2) A, alpha = 67.393(2) degrees, beta = 87.979(2) degrees, gamma = 80.268(3) degrees, V = 1643.2(4) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-O)(mu-pz)(3)Cl(3)] (2), monoclinic P2/c, a = 12.807(2) A, b = 13.093(2) A, c = 23.139(4) A, beta = 105.391(3) degrees, V = 3741(1) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)].0.75H(2)O.0.5CH(2)Cl(2) (3a), triclinic P-1, a = 14.042(2) A, b = 23.978(4) A, c = 25.195(4) A, alpha = 76.796(3) degrees, beta = 79.506(3) degrees, gamma = 77.629(3) degrees, V = 7988(2) A(3), Z = 4; [Bu(4)N](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)] (3b), monoclinic C2/c, a = 17.220(2) A, b = 15.606(2) A, c = 20.133(2) A, beta = 103.057(2) degrees, V = 5270(1) A(3), Z = 4; [Et(3)NH][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(pzH)] (4), triclinic P-1, a = 11.498(2) A, b = 11.499(2) A, c = 12.186(2) A, alpha = 66.475(3) degrees, beta = 64.279(3) degrees, gamma = 80.183(3) degrees, V = 1331.0(5) A(3), Z = 2. Magnetic susceptibility measurements show that the three copper centers of 2 are strongly antiferromagnetically coupled with J(Cu-Cu) = -500 cm(-1).  相似文献   

10.
A recently discovered series of quaternary compounds of the general type [K(m)(ROH)(n)()][M(x)Sn(y)()Se(z)] (R = H, Me), containing ternary anions with [SnSe(4)](4-)-coordinated transition metal centers (M = Co, Mn, Zn, Cd, Hg) has now been extended by the synthesis and characterization of the two ortho-thiostannate-coordinated species, [Na(10)(H(2)O)(32)][M(5)Sn(mu(3)-S)(4)(SnS(4))(4)].2H(2)O (M = Zn (1), Co (2)). The central structural motifs of compounds 1 and 2 are highly charged [M(5)Sn(mu(3)-S)(4)(SnS(4))(4)](10-) anions, being the first T3-type supertetrahedral ternary anions reported to date. The exposure of single crystals of 2 to a dynamic vacuum for several hours resulted in the reversible formation of a partially dehydrated, but still monocrystalline material of the composition [Na(10)(H(2)O)(6)][Co(5)Sn(mu(3)-S)(4)(SnS(4))(4)] (3). The loss of 28 of the 34 water molecules only slightly affects the internal structure of the ternary anion in 3 and leads to a significant compacting of the crystal structure with closer linkage of the [Co(5)Sn(5)S(20)](10-) cluster units via the Na(+) cations. Magnetic measurements on 3 show that the ground state of the Co/Sn/S cluster is S = 1/2, indicating a significant antiferromagnetic coupling between the Co centers, which has also been rationalized by DFT investigations of the electronic situation in the ternary subunits of 1-3.  相似文献   

11.
The di- and tetranuclear metal sandwich-type silicotungstates of Cs10[(gamma-SiW10O36)2{Zr(H2O)}2(mu-OH)2] x 18 H2O (Zr2, monoclinic, C2/c (No. 15), a = 25.3315(8) A, b = 22.6699(7) A, c = 18.5533(6) A, beta = 123.9000(12) degrees, V = 8843.3(5) A(3), Z = 4), Cs10[(gamma-SiW10O36)2{Hf(H2O)}2(mu-OH)2] x 17 H2O (Hf2, monoclinic, space group C2/c (No. 15), a = 25.3847(16) A, b = 22.6121(14) A, c = 18.8703(11) A, beta = 124.046(3) degrees, V = 8974.9(9) A(3), Z = 4), Cs8[(gamma-SiW10O36)2{Zr(H2O)}4(mu4-O)(mu-OH)6] x 26 H2O (Zr4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.67370(10) A, c = 61.6213(8) A, V = 9897.78(17) A(3), Z = 4), and Cs8[(gamma-SiW10O36)2{Hf(H2O)}4(mu4-O)(mu-OH)6] x 23 H2O (Hf4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.68130(10) A, c = 61.5483(9) A, V = 9897.91(18) A(3), Z = 4) were obtained as single crystals suitable for X-ray crystallographic analyses by the reaction of a dilacunary gamma-Keggin silicotungstate K8[gamma-SiW10O36] with ZrOCl2 x 8 H2O or HfOCl2 x 8 H2O. These dimeric polyoxometalates consisted of two [gamma-SiW10O36](8-) units sandwiching metal-oxygen clusters such as [M2(mu-OH)2](6+) and [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). The dinuclear zirconium and hafnium complexes Zr2 and Hf2 were isostructural. The equatorially placed two metal atoms in Zr2 and Hf2 were linked by two mu-OH ligands and each metal was bound to four oxygen atoms of two [gamma-SiW10O36](8-) units. The tertanuclear zirconium and hafnium complexes Zr4 and Hf4 were isostructural and consisted of the adamantanoid cages with a tetracoordinated oxygen atom in the middle, [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). Each metal atom in Zr4 and Hf4 was linked by three mu-OH ligands and bound to two oxygen atoms of the [gamma-SiW10O36](8-) unit. The tetra-nuclear zirconium and hafnium complexes showed catalytic activity for the intramolecular cyclization of (+)-citronellal to isopulegols without formation of byproducts resulting from etherification and dehydration. A lacunary silicotungstate [gamma-SiW10O34(H2O)2](4-) was inactive, and the isomer ratio of isopulegols in the presence of MOCl2 x 8 H2O (M = Zr or Hf) were much different from that in the presence of tetranuclear complexes, suggesting that the [M4(mu4-O)(mu-OH)6](8+) core incorporated into the POM frameworks acts as an active site for the present cyclization. On the other hand, the reaction hardly proceeded in the presence of dinuclear zirconium and hafnium complexes under the same conditions. The much less activity is possibly explained by the steric repulsion from the POM frameworks in the dinuclear complexes.  相似文献   

12.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

13.
The syntheses, crystal structures, and magnetochemical characterization of five new iron clusters [Fe5O2(O2CPh)7(edte)(H2O)] (1), [Fe6O2(O2CBut)8(edteH)2] (2), [Fe12O4(OH)2(O2CMe)6(edte)4(H2O)2](ClO4)4 (3), [Fe12O4(OH)8(edte)4(H2O)2](ClO4)4 (4), and [Fe12O4(OH)8(edte)4(H2O)2](NO3)4 (5) (edteH4= N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine) are reported. The reaction of edteH4 with [Fe3O(O2CPh)6(H2O)3](NO3) and [Fe3O(O2CBut)6(H2O)3](OH) gave 1 and 2, respectively. Complex 3 was obtained from the reaction of edteH4 and NaO2CMe with Fe(ClO4)3, whereas 4 and 5 were obtained from the reaction of edteH4 with Fe(ClO4)3 and Fe(NO3)3, respectively. The core of 1 consists of a [Fe4(mu3-O)2]8+ butterfly unit to which is attached a fifth Fe atom by four bridging O atoms. The core of 2 consists of two triangular [Fe3(mu3-O)]7+ units linked together by six bridging O atoms. Finally, the cores of 3-5 consist of an [Fe12(mu4-O)4(mu-OH)2]26+ unit. Variable-temperature (T) and -field (H) solid-state direct and alternating current magnetization (M) studies were carried out on complexes 1-3 in the 1.8-300 K range. Analysis of the obtained data revealed that 1, 2, and 3-5 possess an S = 5/2, 5, and 0 ground-state spin, respectively. The fitting of the obtained M/N(muB) vs H/T data was carried out by matrix diagonalization, and this gave values for the axial zero-field splitting (ZFS) parameter D of -0.50 cm-1 for 1 and -0.28 cm-1 for 2.  相似文献   

14.
New organometallic clusters with the MFe2(mu3-S)2 core (M = Mo or Fe) have been synthesized from inorganic [MoFe3S4] or [Fe4S4] clusters under high pressure CO. The reaction of (Cl4-cat)2Mo2Fe6S8(PR3)6[R = Et, (n)Pr] with high pressure CO produced the crystalline [MoFe2S2]4+ clusters, (Cl4-cat)Mo(O)Fe2S2(CO)(n)(PR3)6-n[n= 4, Et =I, (n)Pr =II; n = 5, Et =III] after flash column chromatography. The similar [MoFe2S2]4+ cluster, (Cl4-cat)2MoFe2S2(CO)2(depe)(2)(IV), also has been achieved by the reactions of (Cl4-cat)MoFe3S3(CO)6(PEt3)2 with depe by reductive decoupling of the cluster. For the [Fe3(mu3-S)2]4+ cluster, [Fe4S4(PcHex3)4](BPh4) was reacted with high pressure CO to produce a new Fe3S2(CO)7(PcHex)(2)(V) compound. These reactions generalized the preparation of organometallic compounds from inorganic clusters. All the compounds have been characterized by single crystal X-ray crystallography. A possible reaction pathway for the synthesis of the MFe2(mu3-S) clusters (M = Mo or Fe) has also been suggested.  相似文献   

15.
Antimony compounds that feature multidentate aryloxide ligands, namely [eta4-N(o-C6H4O)3]Sb(OSMe2), {{[eta3-N(o-C6H4OH)(o-C6H4O)2]Sb}2(mu2-O)}2, and {[eta3-PhN(o-C6H4O)2]Sb}4(mu3-O)2 have been synthesized from N(o-C6H4OH)3 and PhN(o-C6H4OH)2 and structurally characterized by X-ray diffraction. While [eta4-N(o-C6H4O)3]Sb(OSMe2) exists as a discrete mononuclear species, the oxo complexes {{[eta3-N(o-C6H4OH)(o-C6H4O)2]Sb}2(mu2-O)}2 and {[eta3-PhN(o-C6H4O)2]Sb}4(micro3-O)2 are multinuclear. Specifically, the dinuclear fragment {[eta3-N(o-C6H4OH)(o-C6H4O)2]Sb}2(mu2-O)} exists in a dimeric form due to the bridging oxo ligand participating in an intermolecular hydrogen bonding interaction, while the dinuclear fragment {[eta3-PhN(o-C6H4O)2]Sb}2(mu-O) exists in a dimeric form due to the bridging oxo ligand serving as a donor to the antimony of a second fragment. The structures of {{[eta3-N(o-C6H4OH)(o-C6H4O)2]Sb}2(mu2-O)}2 and {[eta3-PhN(o-C6H4O)2]Sb}4(mu3-O)(2), therefore, indicate that an oxo ligand bridging two Sb(III) centers is sufficiently electron rich to serve as both an effective hydrogen bond acceptor and as a ligand for an additional Sb(III) center.  相似文献   

16.
The reactions of the binuclear oxomolybdenum(V) complex [Cl(2)(O)Mo(&mgr;-OEt)(2)(&mgr;-HOEt)Mo(O)Cl(2)] (1) with Me(3)Si(allyl) and SbF(3) produce the compounds [Mo(6)O(6)Cl(6)(&mgr;(3)-O)(2)(&mgr;(2)-OEt)(6)(&mgr;(2)-Cl)(2)] (2) and [Mo(8)O(8)Cl(6)(&mgr;(3)-O)(4)(OH)(2)(&mgr;(2)-OH)(4)(&mgr;(2)-OEt)(4)(HOEt)(4)] (3), respectively. Treatment of 1 with the Lewis base PMe(3) affords the tetrameric complex [Mo(4)O(4)Cl(4)(&mgr;(2)-OEt)(4)(HOEt)(2)(&mgr;(3)-O)(2)] (4), which represents another link in the chain of clusters produced by the reactions of 1 and simulating the build-up of polymeric molybdenum oxides by sol-gel methods. The crystal structure of 4 has been determined [C(12)H(32)Cl(4)Mo(4)O(12), triclinic, P&onemacr;, a = 7.376(2) ?, b = 8.807(3) ?, c = 11.467(4) ?, alpha = 109.61(1) degrees, beta = 92.12(3) degrees, gamma = 103.75(2) degrees, Z = 1]. By contrast, reaction of 1 with the nitrogen base NEt(3), followed by treatment with [PPN]Cl.2H(2)O ([PPN](+) = [Ph(3)P=N=PPh(3)](+)), gives the complex [PPN](+)[Et(3)NH](+)[Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-) (6) in 90% yield. Its crystal structure [C(36)H(30)Cl(4)MoNOP(2), triclinic, Pna2(1), a = 21.470(6) ?, b = 16.765(2) ?, c = 9.6155(14) ?, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, Z = 16] includes the anion [Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-), which is a charged derivative of the species forming the gels in sol-gel processes starting from chloromolybdenum ethoxides. Furthermore, compound 1 is found to be catalytically active in esterification and dehydration reactions of alcohols.  相似文献   

17.
The reaction of [Sn(NMe(2))(2)](2) (1) with 4 equiv of HOCH(2)CMe(3) (HONep) leads to the isolation of [Sn(ONep)(2)](infinity) (2). Each Sn atom is four coordinated with mu-ONep ligands bridging the metal centers; however, if the free electrons of the Sn(II) metal center are considered, each Sn center adopts a distorted trigonal bipyramidal (TBP) geometry. Through (119)Sn NMR experiments, the polymeric compound 2 was found to be disrupted into smaller oligomers in solution. Titration of 2 with H(2)O led to the identification of two unique hydrolysis products characterized by single-crystal X-ray diffraction as Sn(5)(mu(3)-O)(2)(mu-ONep)(6) (3) and Sn(6)(mu(3)-O)(4)(mu-ONep)(4) (4). Compound 3 consists of an asymmetrical molecule that has five Sn atoms arranged in a square-based pyramidal geometry linked by four basal mu-ONep ligands, two facial mu(3)-O, and two facial mu-ONep ligands. Compound 4 was solved in a novel octahedral arrangement of six Sn cations with an asymmetric arrangement of mu(3)-O and mu-ONep ligands that yields two square base pyramidal and four pyramidal coordinated Sn cations. These compounds were further identified by multinuclear ((1)H, (13)C, (17)O, and (119)Sn) solid-state MAS and high resolution, solution NMR experiments. Because of the complexity of the compounds and the accessibility of the various nuclei, 2D NMR experiments were also undertaken to elucidate the solution behavior of these compounds. On the basis of these studies, it was determined that while the central core of the solid-state structures of 3 and 4 is retained, dynamic ligand exchange leads to more symmetrical molecules in solution. Novel products 3 and 4 lend structural insight into the stepwise hydrolysis of Sn(II) alkoxides.  相似文献   

18.
A series of molybdenum and tungsten organometallic oxides containing [Ru(arene)]2+ units (arene =p-cymene, C6Me6) was obtained by condensation of [[Ru(arene)Cl2]2] with oxomolybdates and oxotungstates in aqueous or nonaqueous solvents. The crystal structures of [[Ru(eta6-C6Me6]]4W4O16], [[Ru(eta6-p-MeC6H4iPr]]4W2O10], [[[Ru-(eta6-p-MeC6H4iPr)]2(mu-OH)3]2][[Ru(eta6-p-MeC6H4iPr)]2W8O28(OH)2[Ru(eta6-p-MeC6H4iPr)(H2O)]2], and [[Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) have been determined. While the windmill-type clusters [[Ru(eta6-arene)]4(MO3)4(mu3-O)4] (M = Mo, W; arene =p-MeC6H4iPr, C6Me6), the face-sharing double cubane-type cluster [[Ru(eta6-p-MeC6H4iPr)]4(WO2)2(mu3-O)4(mu4-O)2], and the dimeric cluster [[Ru(eta6-p-MeC6H4iPr)(WO3)3(mu3-O)3(mu3-OH)Ru(eta6-pMeC6H4iPr)(H2O)]2(mu-WO2)2]2- are based on cubane-like units, [(Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) are more properly described as lacunary Lindqvist-type polyoxoanions supporting three ruthenium centers. Precubane clusters [[Ru(eta6-arene)](MO3)2(mu-O)3(mu3-O)]6- are possible intermediates in the formation of these clusters. The cluster structures are retained in solution, except for [[Ru(eta6-p-MeC6H4iPr)]4Mo4O16], which isomerizes to the triple-cubane form.  相似文献   

19.
Aggregation of tetranuclear Mn(4)O(2) building blocks with alkali ion was studied. Several Mn(iii) complexes containing [Mn(4)O(2)(AcO)(7)(pyz)(2)](-) (pyz = pyrazinate) anion(s) were obtained from an assembly system containing Mn(ii), MnO(4)(-), HOAc and Hpyz (Napyz or Kpyz). These [Mn(4)O(2)](8+) complexes have monomeric (1 and 2), dimeric (4 and 5) and one-dimensional chain () structures of which alkali metal ion connects the Mn ions of adjacent [Mn(4)O(2)](8+) units through mu(1,1)- and mu(1,3)-carboxylate bridges. Complexes 2 or 3 were converted into [Mn(12)O(12)(AcO)(16)(H(2)O)(4)] in EtOH solution in the presence of HOAc. However, in MeOH solution, a coordination polymer [Mn(2)(HCOO)(4)(H(2)O)(4)](n) was obtained accompanying the oxidation of MeOH to become HCHO and HCOOH. Tracing the (1)H NMR spectra of 2 or 3 in CD(3)OD, the disappearance of the resonance signals in 3 h indicated the decomposition of the [Mn(4)O(2)](8+) cores. Complex 2 exhibits its proton NMR signals in CDCl(3) which are similar to those of its pic analogue but accompany downfield shift to various extents for all the corresponding signals. Variable-temperature magnetic susceptibilities of complexes 2-5 in the range 5-300 K were recorded and were fitted for an Mn(4)O(2) butterfly core, giving the fitting parameters J(bb) = -2.67 to -3.76 cm(-1) and J(wb) = -1.16 to -3.14 cm(-1). Small J values indicate weak antiferromagnetic coupling interactions of the Mn(iii) sites and the spin ground states are considered as S(T) = 0 based on the J(bb)/J(wb) ratio approximately 1 for these complexes. The ESR spectra were recorded for complex 2 in dual-mode at liquid-helium temperatures and no obvious signal could be found. The addition of p-cresol gives rise to the reduction of the [Mn(4)O(2)](8+), resulting in observable signals.  相似文献   

20.
The initial use of di-2-pyridyl ketone oxime [(py)2CNOH] in iron(III) carboxylate chemistry has yielded the tetranuclear complex [Fe4O2Cl2(O2CMe)2{(py)2CNO}4] (1). Compound 1 can be synthesized either by the 1:2:1 molar ratio reaction between Fe(III), MeCO2-, and (py)2CNOH (complex 1a) or by the 1:3 molar ratio reaction between [Fe3O(O2CMe)6(H2O)3]Cl and (py)2CNOH (complex 1b). The presence of N3- in both reaction mixtures has afforded the tetranuclear complex [Fe4O2(N3)2(O2CMe)2{(py)2CNO}4] (2), which can be alternatively synthesized by the reaction of 1 with N3-. Compound 1a crystallizes in the tetragonal space group /-4 with (at 25 degrees C) a = 35.06(2) A, b = 35.06(2) A, c = 13.255(6) A, V = 16293(2) A(3), and Z = 8. Compound 1b crystallizes in the monoclinic space group P2(1)/c with (at 25 degrees C) a = 22.577(7) A, b = 17.078(6) A, c = 17.394(6) A, beta = 93.50(1) degrees , V = 6694(4) A(3), and Z = 4. Compound 2 crystallizes in the triclinic space group P1 with (at 25 degrees C) a = 13.658(9) A, b = 15.815(9) A, c = 17.29(1) A, alpha = 97.08(3) degrees , beta = 98.55(3) degrees , gamma = 112.12(3) degrees , V = 3355(4) A(3), and Z = 2. The structures of 1 and 2 contain the [Fe4(mu3-O)2]8+ core comprising four Fe(III) ions in a "butterfly" disposition and two mu3-O2- ions, each bridging three Fe(III) ions forming the "wings" of the "butterfly". The M?ssbauer spectra of 1b and 2 consist of composite quadrupole-split doublets, with parameters typical for high-spin Fe(III) in octahedral environments. Magnetic susceptibility measurements on 1a revealed antiferromagnetic interactions between the S = 5/2 ferric ions, with best-fit parameters being J(wb) = -40.2 cm(-1) and J(bb) = -59.4 cm(-1) (H = -2SigmaJiJj) for wingtip-body and body-body interactions, respectively, yielding an S = 1 ground state. Both wingtip-body and body-body interactions are well determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号