首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mono‐cobalt substituted Wells–Dawson polyoxometalate with an antenna ligand linked to the CoII atom, was prepared by reaction of the mono‐vacant Wells–Dawson precursor [P2W17O61]10– with a imidazole‐cobalt complex by using the bench method. It was isolated as the imidazole salt: (HIm)7H[P2W17O61Co(Im)] · 4H2O ( 1 ) (Im = imidazole). Compound 1 was characterized by elemental analysis, IR and UV/Vis spectroscopy, TG analysis, cyclic voltammetry and single‐crystal/powder X‐ray diffraction. This is the first example of the 3d transition metal mono‐substituted Wells–Dawson polyoxometalate with an antenna ligand.  相似文献   

2.
A series of insoluble cesium partly substituted Wells–Dawson type heteropolyacids, CsxH6−xP2W18O62 (x = 1.5–6.0), were synthesized and characterized using the techniques including UV–vis/DRS, FT-IR, XRD, XPS, and N2 porosimetry. As the unique and reusable solid acid catalysts, CsxH6−xP2W18O62 salts were applied to produce diphenolic acid by the condensation reaction of phenol with bio-platform molecule, levulinic acid. For comparison, cesium partly substituted Keggin type heteropolyacids (CsxH3−xPW12O40, x = 1.0–3.0), HCl, HZSM-5, and MCM-49 were also tested. Influences on the catalytic activity and selectivity were considered for factors including solvent, molar ratio of phenol to levulinic acid, amount of catalyst, reaction temperature, stirring speed, and reaction time. The experimental results demonstrated that both Cs1.5H4.5P2W18O62and Cs2.5H0.5PW12O40 exhibited excellent catalytic performance under solvent-free conditions. Furthermore, both selectivity and activity of Cs1.5H4.5P2W18O62 were higher than those of Cs2.5H0.5PW12O40. Reasons for the different catalytic behaviors between two types of cesium partly substituted heteropolyacids were investigated.  相似文献   

3.
Heterolytic cleavage of the C–OH bond of various benzylic alcohols has been catalyzed with H6P2W18O62. Alkenes or symmetric ethers are produced, depending on the structure of the substrate.  相似文献   

4.
The densities and ultrasonic velocity of {ethyl tert-butyl ether (ETBE) + (benzene, toluene, ethylbenzene, isooctane, tert-butyl alcohol, and ethanol)} over the temperature range (288.15 to 323.15) K and atmospheric pressure, have been measured over the whole concentration range. The experimental excess volumes and deviation of isentropic compressibilities data have been analysed in terms of different theoretical models. The gathered data improve open literature related to gasoline additives, and help to understand the ETBE volumetric and acoustic trend into different chemical environment.  相似文献   

5.
The novel, dimeric titanium(IV )‐substituted phosphotungstate [(TiP2W15O55OH)2]14? ( 1 ) has been synthesized and characterized by IR and 31P NMR spectroscopy, elemental analysis, and single‐crystal Xray diffraction. The polyanion consists of two [P2W15O56]12? Wells–Dawson moieties linked through two titanium(IV ) centers. Polyanion 1 is a dilacunary species and represents the first Ti‐containing sandwich‐type structure. The titanium centers are octahedrally coordinated by three oxygen atoms of each P2W15O56 subunit. The edge‐shared TiO6 units are symmetrically equivalent and have no terminal ligands. Polyanion 1 shows a chiral distortion within each P2W15Ti fragment. We also report on the structural characterization of the tetrameric, supramolecular species [{Ti3P2W15O57.5(OH)3}4]24? ( 2 ). Polyanion 2 is composed of four equivalent P2W15Ti3 fragments, fused together through terminal Ti? O bonds, leading to a structure with Td symmetry.  相似文献   

6.
Methyl tert-butyl ether (MTBE) is recently widely used in the chemical and petrochemical industry as a non-polluting octane booster for gasoline and as an organic solvent. The isobaric or isothermal vapor–liquid equilibria (VLE) were determined directly for MTBE+C1–C4 alcohols. The excess enthalpy (HE) for butane+MTBE or isobutene+MTBE and excess volume (VE) for MTBE+C3–C4 alcohols were also determined. Besides, the infinite dilute activity coefficient, partial molar excess enthalpies and volumes at infinite dilution (γ, HE,∞, VE,∞) were calculated from measured data. Each experimental data were correlated with various gE models or empirical polynomial.  相似文献   

7.
The gas-phase synthesis of ETBE from ethanol and isobutene has been carried out over a H-ZSM-5 catalyst in two types of continuous-flow catalytic reactors, fixed-bed and fluidized-bed. We have studied the influence of temperature, molar ratio ethanol/isobutene and weight hourly space velocity on the yield of ETBE.  相似文献   

8.
Isobaric vapor–liquid equilibrium data at 50, 75, and 94 kPa have been determined for the binary system ETBE + propan-1-ol, in the temperature range 325–368 K. The measurements were made in a vapor–liquid equilibrium still with circulation of both phases. Mixing volumes have been also determined from density measurements at 298.15 K and 101.3 kPa and, at the same temperature and pressure, the dependence of interfacial tension on concentration has been measured using the pendant drop technique. According to experimental results, the mixture presents positive deviation from ideal behavior and azeotropy is present at 75 and 94 kPa. No azeotrope was detected at 50 kPa. The mixing volumes of the system are negative over the whole mole fraction range, and the interfacial tensions exhibit negative deviation from the linear behavior. The activity coefficients and boiling points of the solutions were well correlated with the mole fraction using the Wohl, Wilson, NRTL, UNIQUAC equations. Excess volume data and interfacial tensions were correlated using the Redlich–Kister model.  相似文献   

9.
The kinetics of vinylation of 4′-bromoacetophenone (4′-BAP) with n-butyl acrylate (n-BA) has been studied using palladacycle catalyst precursor 1, in the presence of sodium acetate (NaOAc) as a base and tetrabutylammonium bromide (TBAB) as a promoter in N-methyl-2-pyrrolidinone (NMP) solvent. The rate was found to be first order with respect to 4′-BAP, fractional order with the catalyst, and first order tending to zero order with NaOAc concentration. The rates passed through a maximum with variation of TBAB and n-butyl acrylate concentrations. The rate data have been analyzed to propose an empirical model, which is in good agreement with the mechanism already established for Heck reactions using palladacycle catalysts.  相似文献   

10.
Gas phase synthesis of methyl tert-butyl ether (MTBE) from methanol and isobutylene has been studied with several heteropolyacids at 303–383 K. It was found that a Dawson-type heteropolyacid, H6P2W18O62, was much active than Keggin-type heteropolyacids, HnXW12O40 (X = P, Si, Ge, B, and Co), and other solid acids such as SO2−4/ZrO2, SiO---Al2O3 and H-ZSM-5 at 323 K. Since the acid strength of H6P2W18O62 was weaker than H3PW12O40 and H4SiW12O40, factors other than the acid strength are important for the catalytic activity. Pseudoliquid phase behavior was demonstrated for H6P2W18O62 and H3PW12O40 by the measurements of the absorption of methanol during the reaction and by the unique pressure dependencies of the rate of synthesis. From the absorption data (the amount and rate), it is concluded that the high catalytic activity of H6P2W18O62 is brought about by a high-activity state of the pseudoliquid phase in which controlled amounts of molecule are absorbed and the absorption-desorption is rapid. On the other hand, the pseudoliquid phase of H3PW12O40 is in a low-activity state absorbing excessive amounts of molecule.  相似文献   

11.
The effect of adding SiO2 to a precipitated iron-based Fischer–Tropsch synthesis (FTS) catalyst was investigated using N2 physical adsorption, H2 differential thermogravimetric analysis, temperature-programmed reduction/desorption (TPR/TPD) and Mössbauer spectroscopy. The FTS performances of the catalysts with or without SiO2 were compared in a fixed bed reactor. The characterization results indicated that SiO2 facilitates the high dispersion of Fe2O3 and significantly influences the Fe/Cu and Fe/K contacts, which play an important role in the surface basicity, reduction and carburization behaviors, as well as the FTS performances. The incorporation of SiO2 enhances the Fe/Cu contact, further enlarges the H2 adsorption and promotes the reduction of Fe2O3 → FeOx, while the transformation of FeOx → Fe is suppressed probably due to the strong Fe–SiO2 interaction. SiO2 indirectly weakens the surface basicity and severely suppresses the carburization and CO adsorption of the catalyst. In the FTS reaction, it was found that SiO2 decreases the FTS initial activity but improves the catalyst stability. Due to the lower surface basicity than the catalyst without SiO2, the catalyst incorporated with SiO2 has higher selectivity to light hydrocarbons and methane and decreased selectivity to the olefins and heavy hydrocarbons.  相似文献   

12.
Vapour–liquid equilibrium data are reported for the ternary tert-butyl methyl ether+tert-butanol+2,2,4-trimethylpentane and the three binary tert-butyl methyl ether+tert-butanol, tert-butyl methyl ether+2,2,4-trimethylpentane, tert-butanol+2,2,4-trimethylpentane subsystems. The data were measured isothermally at 318.13, 328.20, and 339.28 K covering pressure range 15–100 kPa. Azeotropic data are presented for the tert-butanol+2,2,4-trimethylpentane system. Molar excess volumes at 298.15 K are given for the three binary systems. The binary vapour–liquid equilibrium data were correlated using Wilson, NRTL, and Redlich–Kister equations; the parameters obtained were used for calculation of phase behaviour in ternary system and for subsequent comparison with experimental data.  相似文献   

13.
The precision and long-term stability of pyrolysis probe set-point temperature calibration of a commercially available coiled-filament pyrolyzer were assessed for a variety of polymers, including Kraton® D1107, high-density polyethylene (HDPE), and low-density polyethylene (LDPE). While plots of peak area ratios for Kraton® and HDPE versus pyrolysis set-point temperatures produced statistically significant linear curves at the 95% confidence level, poor precision was observed at each of the set-point temperatures. Plots of peak area ratios for LDPE, in particular for n-C16 alkyldiene/n-C16 alkene peak area ratios, also exhibited good linearity but showed significant improvements in precision at each set-point temperature. In addition, replicate analysis over a 10-month period of peak area ratios for polymers pyrolyzed at a set-point temperature of 900 °C confirmed the improved method precision obtained from pyrolysis of LDPE and analysis of the n-C16 alkyldiene/n-C16 alkene ratio when compared to the precision obtained from pyrolysis of Kraton® D1107 or high-density polyethylene.  相似文献   

14.
We have established time–temperature transformation and continuous-heating transformation diagrams for poly(ether–ether–ketone) (PEEK) and PEEK/poly(ether–imide) (PEI) blends, in order to analyze the effects of relaxation control on crystallization. Similar diagrams are widely used in the field of thermosetting resins. Upon crystallization, the glass transition temperature (Tg) of PEEK and PEEK/PEI blends is found to increase significantly. In the case of PEEK, the shift of the α-relaxation is due to the progressive constraining of amorphous regions by nearby crystals. This phenomenon results in the isothermal vitrification of PEEK during its latest crystallization stages for crystallization temperatures near the initial Tg of PEEK. However, vitrification/devitrification effects are found to be of minor importance for anisothermal crystallization, above 0.1°C/min heating rate. In the case of PEEK/PEI blends, amorphous regions are progressively enriched in PEI upon PEEK crystallization. This promotes a shift of the α-relaxation of these regions to higher temperatures, with a consequent vitrification of the material when crystallized below the Tg of PEI. The data obtained for the blends in anisothermal regimes allow one to detect a region in the (temperature/heating rate) plane where crystallization proceeds in the continuously close proximity of the glass transition (dynamic vitrification). These experimental findings are in agreement with simple simulations based on a modified Avrami model coupled with the Fox equation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 919–930, 1998  相似文献   

15.
The 20th edition of the International Symposium on Electro‐ and Liquid‐Phase Separation Techniques (ITP2013) took place on October 6–9, 2013, at Puerto de la Cruz in Tenerife, Canary Islands (Spain). This article reviews the highlights of this new edition of the symposia, also including the different activities that took place as well as the awards presented.  相似文献   

16.
An efficient catalytic system based on a new palladium–bis(oxazoline) ( Pd-BOX-1 ) complex has been developed. The complex Pd-BOX-1 adopts a legless chair‐type structure where the distorted square planar [PdN2Cl2] moiety and the benzene ring spacer represent the seat and the chair back, respectively. The catalytic activity of Pd-BOX-1 has been investigated in dimethylformamide–water under aerobic and mild conditions in Suzuki–Miyaura coupling reactions of arylboronic acids with aryl iodides, aryl bromides and aryl chlorides, Mizoroki–Heck coupling reactions of aryl halides with styrene derivatives, and Sonogashira coupling reactions of aryl halides with terminal alkynes. A wide range of functional groups as substituents on the arylboronic acids and aryl halides were considered. Pd-BOX-1 demonstrates exceptional air and moisture stability. Of note, the catalyst system based on Pd-BOX-1 shows high recycling ability in Suzuki–Miyaura coupling reactions in dimethylformamide–water without any loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Excess molar enthalpies, measured at 298.15 K in a flow microcalorimeter, are reported for the two ternary mixtures formed by mixing either methyl tert-butyl ether with binary mixtures of 3-methylpentane and either n-decane or n-dodecane. Smooth representations of the ternary results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is found that the Liebermann and Fried model also provided good representation of the ternary results, using only the physical properties of the components and their binary mixtures.  相似文献   

18.
In the present study, the synthesis of mordenite zeolite/MIL‐101(Cr) metal–organic framework (MOF) composite [MOR/MIL‐101(Cr)] using the ship in a bottle method was suggested. The properties of prepared composite and individual MOF and MOR zeolite were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption measurement, and thermogravimetric analysis (TGA). The XRD results indicated diffraction peaks for each compound (MOR and MOF) in composite. The SEM and TEM images showed the formation of plates MOR (with size of 2.5 × 3 μm) along with spherical particles MIL‐101. The Brunauer–Emmett–Teller results showed that the surface area of the composite was smaller than individual MOF and MOR zeolite. Based on TGA plots, the hybrid zeolite/MOF composite was more thermally stable compared with the isolated MIL‐101(Cr). The composite was functionalized by post‐synthetic modification to obtain acid–base bifunctionality (H‐MOR/MIL‐101‐ED) for the synthesis of chromene derivatives. The acidity from framework Al‐O(H)‐Si sites in MOR and basicity from amine groups in MIL‐101 were obtained by post‐synthetic modification.  相似文献   

19.
A novel nanomagnetic supported thiourea–copper(I) complex and inorganic–organic Takemoto‐like hybrid nanomagnetic catalyst was designed, and synthesized. The prepared naomagnetic catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray analysis, transmission and scanning electron microscopies, thermogravimetry, nitrogen adsorption/desorption, zeta potential and vibrating sample magnetometry. Furthermore, the fabricated dual‐role inorganic–organic hybrid catalyst shows a striking and robust catalytic activity for the synthesis of triazoles and benzamides through click and coupling reactions, respectively, under mild and eco‐friendly reaction conditions.  相似文献   

20.
The ion exchange membrane using polysulfone (PSf) and polyether ether ketone (PEEK) as a basic material was prepared to apply in the polymer electrolyte membrane electrolysis (PEME). The sulfonated block copolymer of PSf and poly(phenylene sulfide sulfone) (SPSf-co-PPSS) and the sulfonated PEEK (SPEEK) were blended with tungstophosphoric acid (TPA) to avoid water swelling at elevated temperatures led to decrease in mechanical strength. These prepared ion exchange membranes showed some interesting characteristics including physicochemical stabilities, mechanical and membrane properties.The prepared ion exchange membrane was utilized to prepare the membrane electrode assembly (MEA). MEA consisted of Pt/PEM/Pt was prepared by equilibrium and non-equilibrium impregnation–reduction (I–R) methods. The prepared MEA by non-equilibrium I–R method was used in the PEME unit cell. The cell voltages of the MEA using SPSf-co-PPSS/TPA and SPEEK/TPA membranes were 1.83 V and 1.90 V at 1 A/cm2 and 80 °C, with platinum loadings of 1.12 and 1.01 mg/cm2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号