首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selective and sensitive method for simultaneous determination of lead, zinc and copper by adsorptive differential pulse cathodic stripping voltammetry is presented. The method is based on adsorptive accumulation of the complexes of Pb(II), Zn(II), and Cu(II) ions with dopamine onto hanging mercury drop electrode (HMDE), followed by reduction of adsorbed species by differential pulse cathodic stripping voltammetry. The effect of experimental parameters such as pH, dopamine concentration, accumulation time and potential and scan rate were examined. Under the optimized conditions, linear calibration curves were established for the concentration of Pb, Zn, and Cu in the ranges of 5–150, 5–250, and 1–150 ng/mL, respectively. Detection limits of 0.06, 0.25, and 0.04 ng/mL for Pb, Zn, and Cu were obtained. An application of the proposed method is reported for the determination of these elements in some real samples such as natural waters and alloys.  相似文献   

2.
A novel, simple and sensitive adsorptive stripping voltammetry method was developed for simultaneous determination of Cd and Zn using N‐Nitrozo‐N‐phenylhydroxylamine (Cupferron) as a selective complexing agent. Cadmium and zinc metals gave peaks that were distinctly separated by 450–1200 mV, allowing their determination over a wide range of concentrations. The influence of pH and the nature of supporting electrolytes, concentration of ligand, preconcentration time and applied potential were investigated. The detection limits were 0.058 ng/mL for Zn and 0.092 ng/mL for Cd, and the RSD at a concentration level of 50 ppb, were 1.8–2.1 % for both zinc and cadmium, respectively. The method was applied to the determination of cadmium and zinc in blood, drug, food and water samples with the satisfactory results.  相似文献   

3.
An approach to choosing analyte preconcentration conditions for the subsequent capillary electrophoresis (CE) analysis of the concentrate was substantiated using the simultaneous determination of zinc(II) and cadmium(II) trace concentrations as an example. A CE procedure was developed for the determination of Zn and Cd with the following characteristics: The time of the analysis, including analyte preconcentration from a 50-mL sample, was 30 min. The analytical ranges were 0.01–0.2 mg/L for cadmium(II) and 0.005–0.1 mg/L for zinc(II).  相似文献   

4.
We have developed a new method for solid phase extraction (SPE) and preconcentration of trace amounts of cadmium and zinc using cross linked chitosan that was functionalized with 2-aminopyridine-3-carboxy acid. Analytical parameters, sample pH, effect of flow rate, sample volume, and concentration of eluent on column SPE were investigated. The effect of matrix ions on the recovery of cadmium and zinc has been investigated and were found not to interfere with preconcentration. Under the optimum experimental conditions, the preconcentration factors for Cd(II) and Zn(II) were found to be 90. The two elements were quantified via atomic absorption spectrometry. The detection limits for cadmium and zinc are 21 and 65?ng?L?1, respectively. The method was evaluated by analyzing a certified reference material (NIST 1643e; water) and has been successfully applied to the analysis of cadmium and zinc in environmental water samples.
Figure
A simple and sensitive solid phase extraction method for the preconcentration of Cd(II) and Zn(II) in environmental samples using cross linked chitosan functionalized with 2-aminopyridine-3-carboxylic acid was developed. The metal ions enriched by functionalized chitosan were eluted with acid and determined by AAS.  相似文献   

5.
A catalytic-spectrophotometric method for the determination of traces of palladium(II) is proposed. The reaction is based on the catalytic action of palladium(II) on the reduction of azure I (λmax = 647 nm) by sodium hypophosphite. The various variables affecting the sensitivity were studied, and a study of interfering ions was also carried out. The reaction gave a detection limit of 4.3 ng/mL palladium(II) and good reproducibility with a relative standard deviation of 1.53–1.98% in the palladium(II) concentration range 40–200 ng/mL. The method yielded another linear range (5–40 ng/mL) when using slightly different conditions. In this case, the detection limit was 0.78 ng/mL palladium(II), and the relative standard deviation for ten replicate analyses of 20 ng/mL palladium(II) was 2.05%. The method was applied to the determination of palladium in a sample of activated charcoal. The text was submitted by the authors in English.  相似文献   

6.
A sensitive and selective method has been developed for the simultaneous determination of cadmium, zinc, nickel and cobalt. The method is based on the chelation of metal ions with 2-(8-quinolylazo)-4,5-diphenylimidazole (QAI) and the subsequent reversed-phase (RP) high-performance liquid chromatographic separation and spectrophotometric detection of the metal chelates. The chelates were separated on an RP column with acetonitrile-water containing ethylenediamine tetraacetic acid and sodium acetate (pH 7.5). Though Zn(II) and Cd(II) chelates with azo compounds were generally labile in the RP column, these chelates with QAI were successfully detected. When analyses were carried out at 575 nm and at 0.001 absorbance unit full scale, the peak height calibration curves were linear up to 2.0 ng for Cd(II), 2.4 ng for Zn(II), 0.14 ng for Ni(II) and 0.72 ng for Co(II) in 100-microL injections, respectively; the detection limits (3sigma, three times of the standard deviation for the blank signal) for Cd(II), Zn(II), Ni(II) and Co(II) were 4.8, 24, 2.4 and 7.2 pg in 100 microL of injected solution, respectively. The proposed method was successfully applied to the analysis of tobacco without any preliminary concentration or separation.  相似文献   

7.
A spectrophotometric method for the determination of trace amounts of cobalt(II), nickel(II), and copper(II) after the adsorption of their 2-aminocyclopentene-1-dithiocarboxylate complexes on microcrystalline naphthalene has been developed. These complexes are adsorbed on microcrystalline naphthalene at pH 4.5 by shaking for 5 min. The formed solid mass is separated by filtration, and dissolved in dimethylformamide. The absorption spectra were processed using the partial least-squares multivarate calibration method for the analysis of a ternary mixture of Co(II), Ni(II), and Cu(II). The detection limits for Co(II), Ni(II), and Cu(II) were 3.3, 10.0, and 0.8 ng/mL, respectively. The total relative standard error for applying the method to 20 synthetic samples in the concentration ranges of 20–400 ng/mL Co(II), 60–400 ng/mL Ni(II), and 4–400 ng/mL Cu(II) was 1.53%. The proposed method was also successfully applied to the determination of Co(II), Ni(II), and Cu(II) in alloys. The text was submitted by the authors in English.  相似文献   

8.
The potential of modified multiwalled carbon nanotubes (a solid-phase extraction sorbent), for the simultaneous separation and preconcentration of lead, cadmium and nickel; has been investigated. Lead, cadmium and nickel, were adsorbed quantitatively; on modified multiwalled carbon nanotubes (in the pH range of 2–4). Parameters influencing, the simultaneous preconcentration of Pb(II), Ni(II) and Cd(II) ions (such as pH of the sample, sample and eluent flow rate, type and volume of elution solution and interfering ions), have been examined and optimized. Under the optimum experimental conditions, the detection limits of this method. for Pb(II), Ni(II) and Cd(II) ions, were 0.32, 0.17 and 0.04 ng mL−1 in original solution, respectively. Seven replicate determinations, of a mixture of 2.0 μg mL−1 lead and nickel, and 1.0 μg mL−1 cadmium; gave a mean absorbance of 0.074, 0.151 and 0.310, with relative standard deviation 1.7%, 1.5% and 1.2%, respectively. The method has been applied, to the determination of trace amounts of lead, cadmium and nickel; in biological and water samples, with satisfactory results.   相似文献   

9.
A new simple and inexpensive optical chemical sensor for cadmium(II) ions is presented. The cadmium sensing system was prepared by incorporating 2-amino-cyclopentene-1-dithiocarboxylic acid (ACDA) on a triacetylcellulose membrane. The absorption spectra of the optical sensor membrane in Cd(II) solution showed a maximum peak at 430 nm. The proportionality in intensity of the membrane color on the optode to varying amounts of Cd(II) suggests its potential applications for screening Cd(II) in aqueous samples by visual colorimetry. The sensor provided a wide concentration range of 3.0 × 10−6–3.4 × 10−4 M of Cd(II) ions with a detection limit of 1.0 × 10−6 M (0.2 μg/mL). The relative standard deviations for eight replicate measurements of 8.0 × 10−6 and 5.0 × 10−5 M Cd(II) were 2.7 and 2.3%, respectively. The response time of the optode was 6 min. The influence of interfering ions on the determination of 1.0 × 10−5 M Cd(II) was studied and the main interferences were removed by extraction method. The sensor was applied to the determination of Cd(II) in water samples.  相似文献   

10.
A method is developed for cadmium and zinc preconcentration on a minicolumn packed with a new chelating polymer sorbent. The effects of the test solution pH and volume, the sample matrix composition, the eluent volume, and the sample and eluent flow rates are studied. Zinc and cadmium in the eluate are determined by flame atomic absorption spectrometry. Under optimal conditions, the determined ion recovery is more than 95%. The detection limits (3σ, n = 20) are found to be 15.0 (Cd) and 17.2 (Zn) ng/mL. The developed method is employed for cadmium and zinc determination in samples of seawater and water obtained after oil pumping.  相似文献   

11.
Electroplating of Ni, Co, and Zn is widely used in the industry, because coating of tools with these materials can improve mechanical and chemical properties such as hardness, toughness, and corrosion resistively. Ni, Co, and Zn are among toxic metals of significance for environmental surveillance. Therefore, determination of these elements in wastewater is very important. This paper reports the use of an adsorptive cathodic stripping voltammetric technique for the simultaneous determination of Ni(II), Co(II), and Zn(II) with dimethylglyoxime (DMG) as a chelating agent. Voltammograms of Ni(II), Co(II), and Zn(II) initially contained three peaks corresponding to these metals. However, the peaks overlapped. Therefore, the effect of organic solvents was studied, and the results showed that the use of a suitable ratio of ethanol-water (1:5) solvent and pH provided peaks that were distinctly separated. The metals can be quantified at concentrations above 0.03 (Ni), 0.02 (Co), and 0.1 μg/mL (Zn). The RSD (%) at concentration levels of 0.10 μg/mL Ni(II), 0.10 μg/mL Co(II), and 0.30 μg/mL Zn(II) is 2.3, 2.0, and 3.3%, respectively. The influence of pH, DMG concentration, scan rate, accumulations time, and potential was investigated. The method was satisfactorily used for determination of the metals under study in water and wastewater. The text was submitted by the authors in English.  相似文献   

12.
A very sensitive and selective catalytic adsorptive cathodic stripping procedure for trace measurements of cobalt is presented. The method is based on adsorptive accumulation of cobalt-CCA (calcon carboxylic acid) complex onto a hanging mercury drop electrode followed by reduction of the adsorbed species by voltammetric scan using differential pulse modulation. The reduction current is enhanced catalytically by nitrite. The effect of various parameters such as pH, concentration of CCA, concentration of nitrite, accumulation potential and accumulation time on the selectivity and sensitivity were studied. The optimum condition for the analysis of cobalt, include pH 5.2 (Acetate buffer), 2.1 μM clacon carboxylic acid, 0.032 M sodium nitrite and an accumulation potential of 0.05 V (versus Ag/AgCl). Under these optimum conditions and for an accumulation time of 60 s, the measured peak current at −0.480 V is proportional to the concentration of cobalt over the entire concentration range tested 0.003–2.0 ng ml−1 with a detection limit of 1 pg ml−1 for an accumulation time of 60 s and 2.0–10.0 ng ml−1 for an accumulation time of 40 s. The relative standard deviations for ten replicate measurement of 0.5 ng ml−1 of cobalt were 3.1%. The main advantage of this new system is the microtrace Co(II) determination by ASV. The method was applied to determination of cobalt in a water sample and some analytical grade salts with satisfactory results. Published in Elektrokhimiya in Russian, 2009, Vol. 45, No. 2, pp. 221–228. The article is published in the original.  相似文献   

13.
The liquid–liquid extraction of zinc(II) and cadmium(II) from sulphate medium by 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (HPMBP) in chloroform is studied. The ionic strength effect of the aqueous phase shows that the extraction of the metal increases with decreasing concentration of sulphate. At initially of about 10?4?M with three different sulphate concentrations 0.033, 0.16 and 0.33?M in the aqueous phase, Zn(II) and Cd(II) are extracted as the complexes Zn(PMBP)2 and Cd(PMBP)2. Sulphate complexes of Zn(II) and Cd(II) are formed in the aqueous phase. The metal–sulphate interaction has been made in evidence by using the Debye–Huckel extended limiting law of ionic activity coefficient.  相似文献   

14.
Ensafi AA  Nazari Z  Fritsch I 《The Analyst》2012,137(2):424-431
Differential pulse anodic stripping voltammetry (DPASV) coupled with redox-magnetohydrodynamics (MHD) is used to enhance the anodic stripping voltammetry (ASV) response using a mercury thin film-glassy carbon electrode. The sensitivity increased to at least a factor of two (at 1.2 T) and is facilitated by using 20.0 mmol L(-1) 1,4-benzoquinone as an alternative pumping species to enhance ASV by redox-MHD. The MHD force formed by the cross-product of ion flux with magnetic field induces solution convection during the deposition step, enhancing mass transport of the analytes to the electrode surface and increasing their preconcentrated quantity in the mercury thin film. Therefore, larger ASV peaks and improved sensitivities are obtained, compared with analyses performed without a magnet. The influence of pH, 1,4-benzoquinone concentration, accumulation potential, and time are also investigated. Detection limits of 0.05, 0.09 and 2.2 ng mL(-1) Cd(II), Pb(II) and Zn(II) were established with an accumulation time of 65 s. The method is used for the analysis of Cd(II), Pb(II) and Zn(II) in different water samples, certified reference materials, and saliva samples with satisfactory results.  相似文献   

15.
Summary Acid-dissociation reaction of the cadmium(II) complex of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphme (H2tspp) proceeds about 1012 times as fast as that of the zinc(II) complex. This provides the basis for a kinetic determination of zinc(II) in presence of a large excess of cadmium (II). The absorbance at soret-band (421 nm) of Zn(II)(tspp) was used to monitor the reaction. At 5.0×10–2 M hydrogen ion concentration, Cd(II)(tspp) dissociates completely to Cd2+ in 1 s and only the reaction associated with Zn(II)(tspp) is observed during the reaction time from 30 s to 5 min. Zinc(II) concentration <10–6 M is determined in the presence of 10–2 M cadmium(II). The molar absorption coefficient is 2.7×105 M –1 cm–1. Iron(III), aluminum(III) and cobalt(II) being masked sodium tartrate, this method is highly selective and is free from interferences of most substances usually encountered. The method was applied to determine zinc(II) in tap water and in cadmium(II) sulfate.  相似文献   

16.
A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.  相似文献   

17.
We have synthesized cadmium(II) ion-imprinted polymers (IIP) and non-imprinted polymers (NIP) using 1-(2-pyridylazo)-2-naphthol as a ligand. The materials were used to prepare a carbon paste electrode for the determination of Cd(II). Polymerization was performed with (a) methacrylic acid as a functional monomer, (b) ethyleneglycol dimethacrylate as the crosslinking monomer, and (c) 2,2′-azobis(isobutyronitrile) as the initiator. Imprinted cadmium ion was removed from the polymeric matrix using nitric acid. The measurements were carried out in an closed circuit after accumulation at ?1.2?V, this followed by electrolysis of the accumulated Cd(II) by voltammetric scanning from ?1.0 to ?0.6?V. The parameters governing the response of the electrode were studied. Under optimized conditions, the response of the electrode is linear in the range from 2.0 to 200?ng?mL?1. The detection limit is 0.31?ng?mL?1. The relative standard deviations are ±3.4 and ±2.1?% for 7 successive determinations of 20.0 and 50.0?ng?mL-1 of Cd(II), respectively. The method was applied to the determination of cadmium (II) in water and food samples.
Figure
a) Preparation of modified carbon paste b) Preparation of Cd(II)-IIP-MCPE c) Differential pulse anodic stripping voltammetry d) Voltammogram  相似文献   

18.
《Electroanalysis》2006,18(2):169-176
Constant current chronopotentiometric stripping analysis using adsorptive accumulation and negative stripping current (AdSCP) was applied for the study of behavior of rabbit liver Cd‐Zn and Zn metallothionein (Cd‐Zn‐MT, ZnMT) on hanging mercury drop electrode. Electrochemically inert or labile behavior of complexes can be distinguished with the application of high (1000 nA) or low (100 to 20 nA) current. Using high current, no influence of added Cd2+ or Zn2+ ions on the reduction of Cd(II) or Zn(II) complexed within MT molecule was observed, except of additions of Cd2+ to ZnMT, where bound Zn(II) was substituted by cadmium ions. With lowering of stripping current and increasing concentration of added Cd2+ or Zn2+ ions in solution progressive formation of reorganized complex with labile behavior is observed. Parallel measurement using DC voltammetry with different rates of polarization or differential pulse voltammetry were in agreement with AdSCP measurement. However, only chronopotentiometric method combines good sensitivity and signal separation at μM concentrations, inevitable in MT studies.  相似文献   

19.
This paper describes the preparation of a new sensor based on Zn‐ferrite modified glassy carbon paste electrode and its electrochemical application for the determination of trace Cd(II) ions in waste waters using differential pulse anodic stripping voltammetry (DPASV). Different Zn/Ni ferrite nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and X‐ray powder diffraction (XRPD). The prepared ferrite nanoparticles were used for the preparation of Zn‐ferrite‐modified glassy carbon paste electrode (ZnMGCPE) for determination of Cd(II) at nanomolar levels in waste water at pH 5. The different parameters such as conditions of preparation, Zn2+/Ni2+/Fe2+ ratio and electrochemical parameters, percentage of modifier, accumulation time, pH and accumulation potential were investigated. Besides, interference measurements were also evaluated under optimized parameters. The best voltammetric response was observed for ZnFe2O4 modifier, when the percentage of modifier was 3 %, accumulation time 9 min, pH of supporting electrolyte 5 and accumulation potential ?1.05 V. Thus prepared electrode displays excellent response to Cd(II) with a detection limit of 0.38 ppb, and selective detection toward Cd(II) was achieved.  相似文献   

20.
The properties of zinc, cadmium, and mercury complexes of 3-methyl-1,2-cyclopentanodione dithiosemicarbazone and the optimal conditions for their formation are described. The complexes were used with success in the photometric determination of traces of zinc, cadmium, and mercury. Seven procedures are proposed for the accurate analysis of Zn(II)-Cd(II), Zn(II)-Hg(II), Zn(II)-Bi(III), Cd(II)-Hg(II), Cd(II)-Bi(III), Hg(II)-Bi(III), and Zn(II)-Cd(II)-Hg(II) mixtures. Satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号