首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effect of low-molecular-weight miscible additives on the sub-Tg (β) relaxation process in bisphenol-A polycarbonate (BPAPC) was studied using high-resolution carbon-13 solid-state NMR. The trend of the spin-lattice relaxation times T1 at 50 MHz suggests that strong intermolecular interactions occur upon mixing when BPAPC is physically stiffened by the antiplasticizing diluent, diphenylphthalate. The values of 13C T1 at 15 MHz in d-chloroform solutions for similar BPAPC-diluent mixtures suggest that diluent effects on the megahertz mobility of the polymer occur exclusively in the solid state. These results are explained using equilibrium thermodynamics, in the Ehrenfest sense, at the second-order glass transition temperature Tg. Theory predicts that the temperature dependence of the Flory–Huggins interaction parameter ?χ/?T changes abruptly as the polymer-diluent blends are cooled below Tg from the molten state. The difference between ?χ/?T in the liquid and glassy states is the major factor which determines the diluent concentration dependence of Tg. A method is developed to estimate the relative magnitudes of χ for polymerdiluent blends in the glassy state.  相似文献   

2.
The thermal properties of blends of polycarbonate (PC) and poly(ε‐caprolactone) (PCL) were investigated by differential scanning calorimetry (DSC). From the thermal analysis of PC‐PCL blends, a single glass‐transition temperature (Tg) was observed for all the blend compositions. These results indicate that there is miscibility between the two components. From the modified Lu and Weiss equation, the polymer–polymer interaction parameter (χ12) of the PC‐PCL blends was calculated and found to range from −0.012 to −0.040 with the compositions. The χ12 values calculated from the Tg method decreased with the increase of PC weight fraction. By taking PC‐PCL blend as a model system, the values of χ12 were compared with two different methods, the Tg method and melting point depression method. The two methods are in reasonably good agreement for the χ12 values of the PC‐PCL blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2072–2076, 2000  相似文献   

3.
To improve the glass transition temperature (Tg) and heat resistance of polyethylene terephthalate (PET) bottle, poly (ethylene glycol 1,4-cyclohexane dimethylene isosorbide terephthalate) (PEICT) with a unique cyclic structure was introduced into PET. The miscibility of the PET/PEICT blends and their feasibility as a heat resistant bottle were investigated. The introduction of PEICT into PET increases the Tg and the PET/PEICT blends exhibit a single Tg, indicating good miscibility between PEICT and PET. Furthermore, the Tg and crystallinity of the PET/PEICT blends can be adjusted by controlling the amount of PEICT added. The PET/PEICT blends were transparent in the visible light range (no significant change in transparency) because the blends were truly miscible as confirmed by Fox equation. As expected, the introduction of PEICT into PET bottle allows for improved heat resistance and shape stability due to the rigid molecular structure and chirality of the two tetrahydrofuran rings in the isosorbide group of PEICT. Based on our results, the as-prepared PET/PEICT blends with controllable high heat resistance can be used as a cost-effective alternative material for various hot-filling conditions in the beverage industry by adjusting the optimal ratio of PEICT to PET for each product (e.g. fruit juice, tea).  相似文献   

4.
Compatible polymer blends have been found to have widespread commercial applications. The simplest criterion for judging polymer—polymer miscibility in the solid state is the glass transition temperature (Tg), which can vary widely according to blend composition for a compatible system.Recently, an equation which predicts the Tg of intimate mixtures of compatible polymers has been derived, based on classical thermodynamics. Only a knowledge of the Tg and heat capacity increment (ΔCp) of each pure component is required to predict the Tg at any composition.In this paper, the validity of this entropy-based relationship is investigated for a variety of commercial compatible polymer blends, including some based on poly(vinyl chloride), polystyrene, and poly(2,6-dimethyl-,4-phenylene oxide). The Tg and ΔCp of each pure component are measured with a Perkin-Elmer DSC-2 differential scanning calorimeter, are predicted glass transition temperatures are compared with those observed experimentally.  相似文献   

5.
A novel method was developed to determine the ultra-low glass transition temperature (Tg) of materials through physical blending via differential scanning calorimetry. According to the Fox equation for polymer blends, a blend of two fully compatible polymers has only one Tg. The single Tg is a function of the Tgs of the two simple polymers. Thus, the ultra-low Tg of one material can be obtained from the Tgs of another polymer and their blends. The error of Tg measurements depends on the measurement error of the Tgs for the blends and another polymer. The method was successfully applied to determine the Tgs of acetyl tributyl citrate (ATBC), tributyl citrate (TBC) and poly(ethylene glycol)s (PEG)s with different molecular weights. The Tgs for ATBC, TBC, PEG-4000 and PEG-800 were ?57.0 °C, ?62.7 °C, ?76.6 °C and ?83.1 °C, respectively. For all the samples, the standard deviation of measurements was less than 3.3 °C, and the absolute error of measurements was theoretically not more than 5.3 °C. These results indicate that this method has acceptable precision and accuracy.  相似文献   

6.
Mechano-optical behavior and related structural evolution during uniaxial stretching of melt miscible poly (ethylene terephthalate) (PET)/poly (ether imide) (PEI) blends were studied near their glass transition temperature using an instrumented machine that measures true stress, true strain and spectral birefringence simultaneously. Stretching from amorphous state, two distinct stress-optical regimes were observed at temperatures between Tg and Tcc (cold crystallization). Near Tg, a typical photoelastic behavior persists until a critical temperature above which temperature independent initial stress optical behavior is observed. At those temperatures above Tg, where glassy behavior is observed, decreasing stretching rate was also found to eliminate this glassy photo elastic regime leading to the observation of a linear initial stress optical behavior that becomes temperature independent as expected from linear stress optical rule. Increasing PEI concentration in the blends suppresses crystallizability and increases temperature at which initial elastic region disappears giving way to pure liquid behavior where linear stress optical behavior is observed. This is attributed to the increase and broadening of the glass transition temperature with the addition of noncrystallizable PEI. In PET/PEI blends, the stress-optical coefficient (SOC), determined in a linear stress optical regime, was found to increase linearly with the increase in PEI concentration.  相似文献   

7.
Modulated-temperature differential scanning calorimetry was used to measure the glass transition temperature,T g, the heat capacity relaxation in the glassy state and the increment of heat capacity, Cp, in the glass transition region for several polymers. The differential of heat capacity with respect to temperature was used to analyseT g and Cp simply and accurately. These measurements are not affected by complex thermal histories.  相似文献   

8.
Blends of bisphenol-A polyarbonate (PC) and poly(ethylene terephthalate) (PET) has been investigated by differential scanning calorimetry and scanning electron microscopy. Blends were prepared by screw extrusion and solution casting with weight fractions of PC in the blends varying from 0.90 to 0.10. From the measured glass transition temperature (Tg) and apparent weight fractions of PC and PET dissolved in each phase, it appears that PET dissolves more in the PC-rich phase than does the PC in the PET-rich phase. The composition-dependent values of the Flory–Huggins polymer–polymer–interaction parameter were determined and found to be from 0.054 to 0.037 for extruded blends at 275°C and from 0.058 to 0.040 for solution casting at 25°C. The interaction parameter decreases with increasing PET concentration. This result is consistent with the values of the Tgs, the microscopy study, and the measured extrudate swell ratios which show that compatibility increases more in the PET-rich compositions than in the PC-rich compositions. The PC–PET blends are not microscopically miscible for all the blend compositions.  相似文献   

9.
We measured thermal diffusivity and heat capacity of polymers by laser flash method, and the effects of measurement condition and sample size on the accuracy of the measurement are discussed. Thermal diffusivities of PTFE films with thickness 200–500 μm were the same as those data that have been reported. But, the data for film thickness less than 200 μm have to be corrected by an equation to cancel thermal resistance between sample film and graphite layers for receiving light and detecting temperature. Thermal diffusivity was almost unaffected by the size of area vertical to the direction of laser pulse, because heat flow for the direction could be negligible. Specific heat capacity of polymer film was exactly measured at room temperature, provided that low absorbed energy (< 0.3 J) and enough sample mass (> 25 mg) were satisfied as measuring conditions. Thermal diffusivity curve of PS or PC versus temperature had a terrace around Tg, whereas that of PE decreased monotonously with increasing in temperature until Tm. Further, we estimated relative specific heat capacity (RCp) by calculating ratios of heat capacities at various temperatures to the one at 299 K. RCp for PS obtained by laser flash method was larger than that obtained by DSC method, whereas the RCps for PE obtained by the both methods agreed with one another until Tm (305 K). RCp for PS decreased linearly, with increase in temperature after it increased linearly until Tg (389 K), showing similarity to temperature dependency of thermal conductivity. RCp for PE also decreased until Tm, similar to thermal conductivity. ©1995 John Wiley & Sons, Inc.  相似文献   

10.
Polystyrene composite films with different content of C60?+?C70 fullerene mix have been obtained from o-xylene solutions. The mass fraction of fullerene was varied from 0.01 to 0.1 mass%. The glass transition temperatures and specific heat capacities in range of 293?C423?K have been determined for the films by DSC method. The plasticization of the polymer is observed in thermal properties of the films under influence of small fullerene additions. The values of T g and C P decrease and thermal coefficient of heat capacity b increase as fullerene content increases up to 0.02 mass%. The effect of interaction between polymer and fullerene molecules on thermal properties becomes evident at higher fullerene content in range from 0.02 to 0.1 mass%. At this the values of T g and C P increase and b coefficient decrease with increasing content of fullerene. Concentration dependence of C P and b values is less steep for polymer composite films in elastic state at temperatures above T g. Molecular interactions in the composites are discussed in view of our-self and literature data.  相似文献   

11.
The thermal conductivity λ and heat capacity per unit volume of poly(vinyl acetate) (260 kg mol−1 in weight average molecular weight) have been measured in the temperature range 150–450 K at pressures up to 1 GPa using the transient hot-wire method, which yielded λ = 0.19 W m−1 K−1 at atmospheric pressure and room temperature. The bulk modulus K has been measured in the temperature range 150–353 K up to 1 GPa. At atmospheric pressure and room temperature, K = 4.0 GPa and (∂K/∂p)T = 8.3. The volume data were used to calculate the volume dependence of λ, $g = - \left( {\frac{{\partial \lambda /\lambda }}{{\partial V/V}}} \right)_T .$ The values for g of the liquid and glassy states were 3.0 and 2.7, respectively, and g of the latter was almost independent of volume and temperature. Theoretical models can predict the value for g of the glassy state to within 25%. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1451–1463, 1998  相似文献   

12.
Bulk samples of Se85-xTe15Bix glassy alloys are obtained by melt quenching technique. Differential scanning calorimetry has been applied to determine the thermal properties of Se-rich Se85-xTe15Bix glassy alloys at different heating rates. The glass transition temperature (T g) is found to shift to a higher temperature with increasing heating rate and with Bi addition. Activation energy and fragility of the system is also calculated. Specific heat is evaluated and a jump in heat capacity is observed at T g. Theoretical parameters viz; density, molar volume, number of atoms per unit volume, lone pair electrons and cohesive energy of the system are also reported.  相似文献   

13.
The thermal expansion of a butadiene–styrene copolymer filled with carbon blacks differing tenfold in mean particle size (HAF and MT) was investigated. The glass transition was unaffected by MT and was raised only 0.2°C for every 10 parts per hundred by weight of polymer of HAF black added. The coefficient of expansion of the polymer component of the composite in the rubbery region was substantially unaffected by either carbon black, but decreased markedly with increasing black loading in the glassy state. These results suggest that free volume is not altered appreciably by the presence of the filler in the rubbery state, but expands with decreasing temperature below Tg. The latter effect is explained by dilatation due to stresses set up around filler particles, arising from differences in the expansion coefficients of filler and polymer, which are not relieved in the glassy state. The near invariability of Tg and of the rubbery fected by adsorption of polymer segments on the carbon black surface. A conservative rough estimate indicates that restriction of segmental motion is confined to a 30 Å layer around the particles in which Tg is elevated by only 10°C.  相似文献   

14.
For a series of five amorphous polymers with a broad range of Tg values the kinetics of macroradical decay was measured by ESR technique and evaluated by the second-order kinetic model. It was found that the temperature Ttr of the transition between two regions of different reactivity in free radical decay reaction agrees quite well with the temperature parameter T0 of the Vogel-Fulcher-Tamman-Hesse (VFTH) equation for α-segmental dynamics. This parameter represents the onset of α-segmental mobility in glassy state below Tg. A nontraditional way of the estimation of T0 values for α-segmental dynamics through study of the macroradical decay in glassy state of amorphous polymers has been suggested. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The calorimetric glass‐transition temperature (Tg) and transition width were measured over the full composition range for solvent–solvent mixtures of o‐terphenyl with tricresyl phosphate and with dibutyl phthalate and for polymer–solvent mixtures of polystyrene with three dialkyl phthalates. Tg shifted smoothly to higher temperatures with the addition of the component with the higher Tg for both sets of solvent–solvent mixtures. The superposition of the differential scanning calorimetry traces showed almost no composition dependence for the width of the transition region. In contrast, the composition dependence of Tg in polymer–solvent mixtures was different at high and low polymer concentrations, and two distinct Tg's were observed at intermediate compositions. These results were interpreted in terms of the local length scale and associated local composition variations affecting Tg. The possible implications of these results for the dynamics of miscible polymer blends were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1155–1163, 2004  相似文献   

16.
The miscibility of poly(4-hydroxystyrene-co-methoxystyrene) (HSMS) and poly(ε-caprolactone) (PCL) was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). HSMS/PCL blends were found to be miscible in the whole composition range by detecting only a glass transition temperature (Tg), for each composition, which could be closely described by the Fox rule. The crystallinity of PCL in the blends was dependent on the Tg of the amorphous phase. The greater the HSMS content in the blends, the lower the crystallinity. The polymer–polymer interaction parameter, χ32, was calculated from melting point depression of PCL using the Nishi-Wang equation. The negative value of χ32 obtained for HSMS/PCL blends has been compared with the value of χ32 for poly(4-hydroxystyrene) (P4HS)/PCL blends. The specific nature, quantitative analysis, and average strength of the intermolecular interactions in HSMS/PCL and P4HS/PCL blends have been determined at room temperature and in the molten state by means of Fourier transform infrared spectroscopy (FTIR) measurements. The FTIR results have been in good correlation with the thermal behavior of the blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 95–104, 1998  相似文献   

17.
Melt blends of poly(ethylene oxide) (PEO) and poly(vinyl acetate (PVAc) were prepared andstudied by Torsional Pendulum Analysis (TPA) and Fourier Transform Infrared (FTIR). Two glasstransitions were found in these blends. The lower T_g corresponds to the segmental motion in thepure PEO. The dependence of the position and broadness of the higher T_g on composition of theblends indicates that the two components are compatible in the amorphous phase with micro-hetero-geneity. These T_g values observed from mixed PVAc/PEO phase are much higher than that calculatedfrom Fox equation. The comparison of the blends quenched and annealed from melt implies thatPVAc mixed with PEO at the segmental level on molten state and the deviation of T_g values fromFox equation could be due to variation of the blend's composition by crystallization of part of thePEO component. Further indication that the blends are compatible down to the level of chain segments and thatthere are specific interactions between PVAc and PEO molecules comes from the analysis of FTIRspectra of the blends and the solution of PVA in diethylene glycol dimethyl ether.  相似文献   

18.
We investigated the effects of lithium bromide (LiBr) on the structure and properties of polyamide 6 (PA6). The strong ion–dipole interactions between lithium cations and the amide groups in PA6 greatly increased the glass transition temperature (Tg) and retarded the crystallization rate of PA6. As a result, compression-molded PA6 blends were highly transparent and had high Tg values. The rheological terminal region was obvious in the blends because the ion–dipole interactions weakened at high temperatures. This indicates that the melt processability was barely affected by LiBr. We also evaluated the optical anisotropy of the polymer to determine its suitability as a functional optical film. We found that hot-stretched blend films had large positive orientation birefringence with significantly weak wavelength dispersion, which can be attributed to the enhanced anisotropic polarizability of PA6. We also found that the stress-optical coefficient in the glassy region decreased with increasing LiBr content. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1513–1520  相似文献   

19.
Large anisotropic deformation affects the physical state of a polymer glass, where the changes in the state of material are revealed by performing a differential scanning calorimetry (DSC) experiment. Previously, the deformation was applied to polymers well below their glass transition temperatures, and it was found that uniaxial compressive loading–unloading resulted in a broad exothermic peak on the DSC trace. Here we report on the effect on the subsequent DSC response of a deformation experiment performed in uniaxial extension on a ductile 50:50 co-polymer poly(BMA-co-MMA) (PBMA/MMA). The deformation of up to 80% strain was applied at Tg − 30°C and Tg − 40°C, that is, closer to Tg than in the previous work. Unlike in the well below Tg deformation case, the DSC trace contains an endothermic peak followed by an exothermic peak. The magnitude of the endothermic peak as well as the asymptotic glassy heat capacity increase with the amount of mechanical work performed during the deformation cycle.  相似文献   

20.
Phase behavior of blends of a liquid-crystalline (LC) polymer with a non-LC polymer and of a series of copolymers containing mesogenic and nonmesogenic units was studied by thermal, optical, and dynamic mechanical methods. The polymers composing the blends and the copolymers had the same constituent monomers. The blends exhibited phase separation over the whole range of compositions studied as observed by DSC and dynamic mechanical analysis. Two glass transition temperatures (Tg) corresponding to the two components and independence of melting (Tm) and isotropization temperatures (Ti) to changes in composition were observed for the blends. The copolymers did not show phase separation over most of the composition range studied. Only one Tg corresponding to that of the major component could be detected for the copolymers, and the Tg was found to increase with an increase in the amount of nonmesogenic monomer in the copolymers. The difference in phase behavior was explained on the basis of the chemical environment of the constituent units in the blends and in copolymers. Phase inversion in the blends was observed by microscopy when the blends contained 60 mol% or more of the non-LC polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号