首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of the cationic, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(8)-C(8)H(8))]BF(4) (1, Ar=C(6)H(5); 2, Ar=p-CH(3)C(6)H(4); 3, Ar=p-CF(3)C(6)H(4)) with LiN(C(6)H(5))(2) in THF at low temperature gave novel N-nucleophilic-addition products, namely, the neutral, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(7)-C(8)H(8)N(C(6)H(5))(2))] (4, Ar=C(6)H(5); 5, Ar=p-CH(3)C(6)H(4); 6, Ar=p-CF(3)C(6)H(4))). Cationic bridging carbyne complexes 1-3 react with (C(2)H(5))(2)NH, (iC(3)H(7))(2)NH, and (C(6)H(11))(2)NH under the same conditions with ring cleavage of the COT ligand to produce the novel diiron-bridging carbene inner salts [Fe(2)[mu-C(Ar)C(8)H(8)NR(2)](CO)(4)] (7, Ar=C(6)H(5), R=C(2)H(5); 8, Ar=p-CH(3)C(6)H(4), R=C(2)H(5); 9, Ar=p-CF(3)C(6)H(4), R=C(2)H(5); 10, Ar=C(6)H(5), R=iC(3)H(7); 11, Ar=p-CH(3)C(6)H(4), R=iC(3)H(7); 12, Ar=p-CF(3)C(6)H(4), R=iC(3)H(7); 13, Ar=C(6)H(5), R=C(6)H(11); 14, Ar=p-CH(3)C(6)H(4), R=C(6)H(11), 15, Ar=p-CF(3)C(6)H(4), R=C(6)H(11)). Piperidine reacts similarly with cationic carbyne complex 3 to afford the corresponding bridging carbene inner salt [Fe(2)[mu-C(Ar)C(8)H(8)N(CH(2))(5)](CO)(4)] (16). Compound 9 was transformed into a new diiron-bridging carbene inner salt 17, the trans isomer of 9, by heating in benzene. Unexpectedly, the reaction of C(6)H(5)NH(2) with 2 gave a novel COT iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NHC(6)H(5)](mu-CO)(CO)(3)(eta(8)-C(8)H(8))] (18). However, the analogous reactions of 2-naphthylamine with 2 and of p-CF(3)C(6)H(4)NH(2) with 3 produce novel chelated iron-carbene complexes [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(10)H(7)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (19) and [Fe(2)[=C(C(6)H(4)CF(3)-p)NC(6)H(4)CF(3)-p](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (20), respectively. Compound 18 can also be transformed into the analogous chelated iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(6)H(5)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (21). The structures of complexes 6, 9, 15, 17, 18, and 21 have been established by X-ray diffraction studies.  相似文献   

2.
In the quest for low-molecular-weight metal sulfur complexes that bind nitrogenase-relevant small molecules and can serve as model complexes for nitrogenase, compounds with the [Ru(PiPr(3))('N(2)Me(2)S(2)')] fragment were found ('N(2)Me(2)S(2)'(2-)=1,2-ethanediamine-N,N'-dimethyl-N,N'-bis(2-benzenethiolate)(2-)). This fragment enabled the synthesis of a first series of chiral metal sulfur complexes, [Ru(L)(PiPr(3))('N(2)Me(2)S(2)')] with L=N(2), N(2)H(2), N(2)H(4), and NH(3), that meet the biological constraint of forming under mild conditions. The reaction of [Ru(NCCH(3))(PiPr(3))('N(2)Me(2)S(2)')] (1) with NH(3) gave the ammonia complex [Ru(NH(3))(PiPr(3))('N(2)Me(2)S(2)')] (4), which readily exchanged NH(3) for N(2) to yield the mononuclear dinitrogen complex [Ru(N(2))(PiPr(3))('N(2)Me(2)S(2)')] (2) in almost quantitative yield. Complex 2, obtained by this new efficient synthesis, was the starting material for the synthesis of dinuclear (R,R)- and (S,S)-[micro-N(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] ((R,R)-/(S,S)-3). (Both 2 and 3 have been reported previously.) The as-yet inexplicable behavior of complex 3 to form also the R,S isomer in solution has been revealed by DFT calculations and (2)D NMR spectroscopy studies. The reaction of 1 or 2 with anhydrous hydrazine yielded the hydrazine complex [Ru(N(2)H(4))(PiPr(3))('N(2)Me(2)S(2)')] (6), which is a highly reactive intermediate. Disproportionation of 6 resulted in the formation of mononuclear diazene complexes, the ammonia complex 4, and finally the dinuclear diazene complex [micro-N(2)H(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] (5). Dinuclear complex 5 could also be obtained directly in an independent synthesis from 1 and N(2)H(2), which was generated in situ by acidolysis of K(2)N(2)(CO(2))(2). Treatment of 6 with CH(2)Cl(2), however, formed a chloromethylated diazene species [[Ru(PiPr(3))('N(2)Me(2)S(2)')]-micro-N(2)H(2)[Ru(Cl)('N(2)Me(2)S(2)CH(2)Cl')]] (9) ('N(2)Me(2)S(2)CH(2)Cl'(2-) =1,2-ethanediamine-N,N'-dimethyl-N-(2-benzenethiolate)(1-)-N'-(2-benzenechloromethylthioether)(1-)]. The molecular structures of 4, 5, and 9 were determined by X-ray crystal structure analysis, and the labile N(2)H(4) complex 6 was characterized by NMR spectroscopy.  相似文献   

3.
The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state. The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated. Crystals of [(V(V)O(2))(2)(pyren)(2)].2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine. The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems. Very significant differences in the metal-binding abilities of the ligands were found. Both 1 and 2 act as tetradentate ligands. H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2). The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution. DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes. Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.  相似文献   

4.
The simple silylhydrazines F(3)SiN(Me)NMe(2) (1), F(2)Si(N(Me)NMe(2))(2) (2), and F(3)SiN(SiMe(3))NMe(2) (3) have been prepared by reaction of SiF(4) with LiN(Me)NMe(2) and LiN(SiMe(3))NMe(2), while F(3)SiN(SnMe(3))NMe(2) (4) was prepared from SiF(4) and (Me(3)Sn)(2)NNMe(2) (5). The compounds were characterized by gas-phase IR and multinuclear NMR spectroscopy ((1)H, (13)C, (14/15)N, (19)F, (29)Si, (119)Sn), as well as by mass spectrometry. The crystal structures of compounds 1-5 were determined by X-ray crystallography. The structures of free molecules 1 and 3 were determined by gas-phase electron diffraction. The structures of 1, 2, and 4 were also determined by ab initio calculations at the MP2/6-311+G** level of theory. These structural studies constitute the first experimental proof for the presence of strong Si.N beta-donor-acceptor bonds between the SiF(3) and geminal NMe(2) groups in silylhydrazines. The strength of these non-classical Si.N interactions is strongly dependent on the nature of the substituent at the alpha-nitrogen atom of the SiNN unit, and has the order 3>4>1. The valence angles at these extremely deformed alpha-nitrogen atoms, and the Si.N distances are (crystal/gas): 1 104.2(1)/106.5(4) degrees, 2.438(1)/2.510(6) A; 3 83.6(1)/84.9(4) degrees, 2.102(1)/2.135(9) A; 4 89.6(1) degrees, 2.204(2) A.  相似文献   

5.
The reaction of electron-rich carbene-precursor olefins containing two imidazolinylidene moieties [(2,4,6-Me(3)C(6)H(2)CH(2))NCH(2)CH(2)N(R)Cdbond;](2) (2a: R=CH(2)CH(2)OMe, 2 b R=CH(2)Mes), bearing at least one 2,4,6-trimethylbenzyl (R=CH(2)Mes) group on the nitrogen atom, with [RuCl(2)(arene)](2) (arene=p-cymene, hexamethylbenzene) selectively leads to two types of complexes. The cleavage of the chloride bridges occurs first to yield the expected (carbene) (arene)ruthenium(II) complex 3. Then a further arene displacement reaction takes place to give the chelated eta(6)-mesityl,eta(1)-carbene-ruthenium complexes 4 and 5. An analogous eta(6)-arene,eta(1)-carbene complex with a benzimidazole frame 6 was isolated from an in situ reaction between [RuCl(2)(p-cymene)](2), the corresponding benzimidazolium salt and cesium carbonate. On heating, the RuCl(2)(imidazolinylidene) (p-cymene) complex 8, with p-methoxybenzyl pendent groups attached to the N atoms, leads to intramolecular p-cymene displacement and to the chelated eta(6)-arene,eta(1)-carbene complex 9. On reaction with AgOTf and the propargylic alcohol HCtbond;CCPh(2)OH, compounds 4-6 were transformed into the corresponding ruthenium allenylidene intermediates (4-->10, 5-->11, 6-->12). The in situ generated intermediates 10-12 were found to be active and selective catalysts for ring-closing metathesis (RCM) or cycloisomerisation reactions depending on the nature of the 1,6-dienes. Two complexes [RuCl(2)[eta(1)-CN(CH(2)C(6)H(2)Me(3)-2,4,6)CH(2)CH(2)N- (CH(2)CH(2)OMe)](C(6)Me(6))] 3 with a monodentate carbene ligand and [RuCl(2)[eta(1)-CN[CH(2)(eta(6)-C(6)H(2)Me(3)-2,4,6)]CH(2)CH(2)N-(CH(2)C(6)H(2)Me(3)-2,4,6)]] 5 with a chelating carbene-arene ligand were characterised by X-ray crystallography.  相似文献   

6.
The reaction of the bis(ethylene) complex [Tp(Me(2) )Ir(C(2)H(4))(2)] (1) (Tp(Me(2) ): hydrotris(3,5-dimethylpyrazolyl)borate) with two equivalents of dimethyl acetylenedicarboxylate (DMAD) in CH(2)Cl(2) at 25 degrees C gives the hydride-alkenyl species [Tp(Me(2) )IrH{C(R)=C(R)C(R)=C(R)CH=CH(2)}] (2, R: CO(2)Me) in high yield. A careful study of this system has established the active role of a number of intermediates en route to producing 2. The first of these is the iridium(I) complex [Tp(Me(2) )Ir(C(2)H(4))(DMAD)] (4) formed by substitution of one of the ethylene ligands in 1 by a molecule of DMAD. Complex 4 reacts further with another equivalent of the alkyne to give the unsaturated metallacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(R)=C(R)}], which can be trapped by added water to give adduct 7, or can react with the C(2)H(4) present in solution generating complex 2. This last step has been shown to proceed by insertion of ethylene into one of the Ir--C bonds of the metallacyclopentadiene and subsequent beta-H elimination. Complex 1 reacts sequentially with one equivalent of DMAD and one equivalent of methyl propiolate (MP) in the presence of water, with regioselective formation of the nonsymmetric iridacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(H)=C(R)}(H(2)O)] (9). Complex 9 reacts with ethylene giving a hydride-alkenyl complex 10, related to 2, in which the C(2)H(4) has inserted regiospecifically into the Ir--C(R) bond that bears the CH functionality. Heating solutions of either 2 or 10 in CH(2)Cl(2) allows the formation of the allyl species 3 or 11, respectively, by simple stereoselective migration of the hydride ligand to the Calpha alkenyl carbon atom and concomitant bond reorganization of the resulting organic chain. All the compounds described herein have been characterized by microanalysis, IR and NMR spectroscopy, and for the case of 3, 7, 7CO, 8NCMe, 9, 9NCMe, and 10, also by single-crystal X-ray diffraction studies.  相似文献   

7.
The synthesis of the crown-ether-substituted bis(organostannyl)methanes Ph(3)SnCH(2)Sn(Ph(2))-CH(2)-[16]crown-5 (1) and Ph(2)ISnCH(2)Sn(I)(Ph)-CH(2)-[16]crown-5 (2) is reported. Both compounds have been characterized by elemental analyses, (1)H, (13)C, (19)F, and (119)Sn NMR spectroscopy, and in the case of compound 2 also by electrospray ionization mass spectrometry. Single-crystal X-ray diffraction analysis revealed for the aqua complex 2.H(2)O trigonal-bipyramidal-configured tin atoms with intramolecular Sn(1)-O(1) and Sn(2)-O(1W) distances of 2.555(2) and 2.440(3) A, respectively. The water molecule is trapped in a sandwich-like fashion between the crown ether oxygen atoms O(2) and O(4) and the Sn(2) atom. NMR spectroscopy unambiguously proved the ability of compound 2 in acetonitrile to overcome the high lattice energy of sodium fluoride and to complex the latter under charge separation.  相似文献   

8.
Manual grinding of the organometallic complex [Fe(eta(5)-C(5)H(4)COOH)(2)] with a number of solid bases, namely 1,4-diazabicyclo[2.2.2]octane, C(6)H(12)N(2), 1,4-phenylenediamine, p-(NH(2))(2)C(6)H(4), piperazine, HN(C(2)H(4))(2)NH, trans-1,4-cyclohexanediamine, p-(NH(2))(2)C(6)H(10), and guanidinium carbonate [(NH(2))(3)C](2)[CO(3)], generates quantitatively the corresponding adducts, [HC(6)H(12)N(2)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (1), [HC(6)H(8)N(2)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (2), [H(2)C(4)H(10)N(2)][Fe(eta(5)-C(5)H(4)COO)(2)] (3), [H(2)C(6)H(14)N(2)][Fe(eta(5)-C(5)H(4)COO)(2)].2 H(2)O, (4.2 H(2)O), and [C(NH(2))(3)](2)[Fe(eta(5)-C(5)H(4)COO)(2)].2 H(2)O, (5.2 H(2)O), respectively. Crystallization from methanol in the presence of seeds of the ground sample allows the growth of single crystals of these adducts; therefore we were able to determine the structures of the adducts by single-crystal X-ray diffraction. This information was used in turn to identify and characterize the polycrystalline materials obtained by the grinding process. In the case of [HC(6)N(2)H(12)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (1), the base can be removed by mild treatment regenerating the starting dicarboxylic acid, while in all other cases decomposition is observed. The solid-solid processes described herein imply molecular diffusion through the lattice, breaking and reassembling of hydrogen-bonded networks, and proton transfer from acid to base.  相似文献   

9.
The reaction of nido-[7,8,9-PC(2)B(8)H(11)] (1) with [[CpFe(CO)(2)](2)] (Cp=eta(5)-C(5)H(5) (-)) in benzene (reflux, 3 days) gave an eta(1)-bonded complex [7-Fp-(eta(1)-nido-7,8,9,-PC(2)B(8)H(10))] (2; Fp=CpFe(CO)(2); yield 38 %). A similar reaction at elevated temperatures (xylene, reflux 24 h) gave the isomeric complex [7-Fp-(eta(1)-nido-7,9,10-PC(2)B(8)H(10))] (3; yield 28 %) together with the fully sandwiched complexes [1-Cp-closo-1,2,4,5-FePC(2)B(8)H(10)] 4 a (yield 30%) and [1-Cp-closo-1,2,4,8-FePC(2)B(8)H(10)] 4 b (yield 5%). Compounds 2 and 3 are isolable intermediates along the full eta(5)-complexation pathway of the phosphadicarbaborane cage; their heating (xylene, reflux, 24 h) leads finally to the isolation of compounds 4 a (yields 46 and 52%, respectively) and 4 b (yields 4 and 5%, respectively). Moreover, compound 3 is isolated as a side product from the heating of 2 (yield 10%). The structure of compound 4 a was determined by an X-ray structural analysis and the constitution of all compounds is consistent with the results of mass spectrometry and IR spectroscopy. Multinuclear ((1)H, (11)B, (31)P, and (13)C), two-dimensional [(11)B-(11)B]-COSY, and (1)H[(11)B(selective)] magnetic resonance measurements led to complete assignments of all resonances and are in excellent agreement with the structures proposed.  相似文献   

10.
The hydroxo compounds [Re(OH)(CO)(3)(N-N)] (N-N=bipy, 2 a; Me(2)-bipy, 2 b) were prepared in a biphasic H(2)O/CH(2)Cl(2) medium by reaction of [Re(OTf)(CO)(3)(N-N)] with KOH. In contrast, when anhydrous CH(2)Cl(2) was used, the binuclear hydroxo-bridged compound [[Re(CO)(3)(bipy)](2)(mu-OH)]OTf (3-OTf) was obtained. Compound [Re(OH)(CO)(3)(Me(2)-bipy)] (2 b) reacted with phenyl acetate or vinyl acetate to afford [Re(OAc)(CO)(3)(Me(2)-bipy)] (4) and phenol or acetaldehyde, respectively. The reactions of [Mo(OH)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1), 2 a, and 2 b toward several unsaturated organic electrophiles were studied. The reaction of 1 with (p-tolyl)isocyanate afforded an adduct of N,N'-di(p-tolyl)urea and the carbonato-bridged compound [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(mu-eta(1)(O),eta(1)(O)-CO(3))] (5). In contrast, the reaction of 2 a with phenylisocyanate afforded [Re(OC(O)NHPh)(CO)(3)(bipy)] (6); this results from formal PhNCO insertion into the O-H bond. On the other hand, compounds [Mo[SC(O)NH(p-tolyl)](eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (7), [Re[SC(O)NH(p-tolyl)](CO)(3)(Me(2)-bipy)] (8 a), and [Re[SC(O)NHEt](CO)(3)(Me(2)-bipy)] (8 b) were obtained by reaction of 1 or 2 b with the corresponding alkyl or aryl isothiocyanates. In those cases, RNCS was inserted into the M-O bond. The reactions of 1, 2 a, and 2 b with dimethylacetylenedicarboxylate (DMAD) gave the complexes [Mo[C(OH)-C(CO(2)Me)C(CO(2)Me)-O](eta(3)-C(3)H(4)-Me-2)(CO)(phen)] (9) and [Re[C(OH)C(CO(2)Me)C(CO(2)Me)O](CO)(2)(N-N)] (N-N=bipy, 10 a; Me(2)-bipy, 10 b). The molecules of these compounds contain five-membered metallacycles that are the result of coupling between the hydroxo ligand, DMAD, and one of the CO ligands. The new compounds were characterized by a combination of IR and NMR spectroscopy, and for [[Re(CO)(3)(bipy)(2)(mu-OH)]BF(4) (3-BF(4)), 4, 5, 6, 7, 8 b, 9, and 10 b, also by means of single-crystal X-ray diffraction.  相似文献   

11.
Iodinations of the ortho, meta, and para fluorous arenes (R(f8)CH(2)CH(2)CH(2))(2)C(6)H(4) (R(f8)=(CF(2))(7)CF(3)) with I(2)/H(5)IO(6) in AcOH/H(2)SO(4)/H(2)O give 3,4-(R(f8)CH(2)CH(2)CH(2))(2)C(6)H(3)I (5) and the analogous 2,4- (6) and 2,5- (7) isomers, respectively. Spectroscopic yields are >90 %, but 5 and 7 must be separated by chromatography from by-products (yields isolated: 70 %, 97 %, 61 %). Reaction of 1,3,5-(R(f8)CH(2)CH(2)CH(2))(3)C(6)H(3) with PhI(OAc)(2)/I(2) gives 2,4,6-(R(f8)CH(2)CH(2)CH(2))(3)C(6)H(2)I (8) on multigram scales in 97 % yield. The CF(3)C(6)F(11)/toluene partition coefficients of 5-8 (24 degrees C: 69.5:30.5 (5), 74.7:25.3 (6), 73.9:26.1 (7), 98.0:2.0 (8)) are lower than those of the precursors, but CF(3)C(6)F(11)/MeOH gives higher values (97.0:3.0 (5), 98.6:1.4 (6), 98.0:2.0 (7), >99.3:<0.3 (8)). Reactions of 5-8 with excess NaBO(3) in AcOH yield the corresponding ArI(OAc)(2) species 9-12 (9, 85 % as a 90:10 9/5 mixture; 10, 97 %; 11, 95 %; 12, 93 % as a 95:5 12/8 mixture). These rapidly oxidize 1,4-hydroquinones in MeOH. Subsequent additions of CF(3)C(6)F(11) give liquid biphase systems. Solvent removal from the CF(3)C(6)F(11) phases gives 5-8 in >99-98 % yields, and solvent removal from the MeOH phases gives the quinone products, normally in >99-95 % yields. The recovered compounds 5-8 are easily reoxidized to 9-12 and used again.  相似文献   

12.
Several iron(III) complexes incorporating diamidoether ligands are described. The reaction between [Li(2)[RN(SiMe(2))](2)O] and FeX(3) (X=Cl or Br; R=2,4,6-Me(3)Ph or 2,6-iPr(2)Ph) form unusual ate complexes, [FeX(2)Li[RN(SiMe(2))](2)O](2) (2, X=Cl, R=2,4,6-Me(3)Ph; 3, X=Br, R=2,4,6-Me(3)Ph; 4, X=Cl, R=2,6-iPr(2)Ph) which are stabilized by Li-pi interactions. These dimeric iron(III)-diamido complexes exhibit magnetic behaviour characteristic of uncoupled high spin (S= 5/2 ) iron(III) centres. They also undergo halide metathesis resulting in reduced iron(II) species. Thus, reaction of 2 with alkyllithium reagents leads to the formation of iron(II) dimer [Fe[Me(3)PhN(SiMe(2))](2)O](2) (6). Similarly, the previously reported iron(III)-diamido complex [FeCl[tBuN(SiMe(2))](2)O](2) (1) reacts with LiPPh(2) to yield the iron(II) dimer [Fe[tBuN(SiMe(2))](2)O](2) but reaction with LiNPh(2) gives the iron(II) product [Fe(2)(NPh(2))(2)[tBuN(SiMe(2))](2)O] (5). Some redox chemistry is also observed as side reactions in the syntheses of 2-4, yielding THF adducts of FeX(2): the one-dimensional chain [FeBr(2)(THF)(2)](n) (7) and the cluster [Fe(4)Cl(8)(THF)(6)]. The X-ray crystal structures of 3, 5 and 7 are described.  相似文献   

13.
HP-Ca(2)Si(5)N(8) was obtained by means of high-pressure high-temperature synthesis utilizing the multianvil technique (6 to 12 GPa, 900 to 1200 degrees C) starting from the ambient-pressure phase Ca(2)Si(5)N(8). HP-Ca(2)Si(5)N(8) crystallizes in the orthorhombic crystal system (Pbca (no. 61), a=1058.4(2), b=965.2(2), c=1366.3(3) pm, V=1395.7(7)x10(6) pm(3), Z=8, R1=0.1191). The HP-Ca(2)Si(5)N(8) structure is built up by a three-dimensional, highly condensed nitridosilicate framework with N([2]) as well as N([3]) bridging. Corrugated layers of corner-sharing SiN(4) tetrahedra are interconnected by further SiN(4) units. The Ca(2+) ions are situated between these layers with coordination numbers 6+1 and 7+1, respectively. HP-Ca(2)Si(5)N(8) as well as hypothetical orthorhombic o-Ca(2)Si(5)N(8) (isostructural to the ambient-pressure modifications of Sr(2)Si(5)N(8) and Ba(2)Si(5)N(8)) were studied as high-pressure phases of Ca(2)Si(5)N(8) up to 100 GPa by using density functional calculations. The transition pressure into HP-Ca(2)Si(5)N(8) was calculated to 1.7 GPa, whereas o-Ca(2)Si(5)N(8) will not be adopted as a high-pressure phase. Two different decomposition pathways of Ca(2)Si(5)N(8) (into Ca(3)N(2) and Si(3)N(4) or into CaSiN(2) and Si(3)N(4)) and their pressure dependence were examined. It was found that a pressure-induced decomposition of Ca(2)Si(5)N(8) into CaSiN(2) and Si(3)N(4) is preferred and that Ca(2)Si(5)N(8) is no longer thermodynamically stable under pressures exceeding 15 GPa. Luminescence investigations (excitation at 365 nm) of HP-Ca(2)Si(5)N(8):Eu(2+) reveal a broadband emission peaking at 627 nm (FWHM=97 nm), similar to the ambient-pressure phase Ca(2)Si(5)N(8):Eu(2+).  相似文献   

14.
In this study, (51)V, (45)Sc and (93)Nb MAS NMR combined with satellite transition spectroscopy analysis were used to characterize the complex solid mixtures: VNb(9(1-x))Ta(9x)O(25), ScNb((1-x))Ta(x)O(4) and ScNb(2(1-x))Ta(2x)VO(9) (x = 0, 0.3, 0.5, 0.7, 1.0). This led us to describe the structures of Sc and V sites. The conclusions were based on accurate values for (51)V quadrupole coupling and chemical shift tensors obtained with (51)V MAS NMR/SATRAS for VNb(9)O(25), VTa(9)O(25) and ScVO(4). The (45)Sc NMR parameters have been obtained for Sc(2)O(3), ScVO(4), ScNbO(4) and ScTaO(4). On the basis of (45)Sc NMR and data available from literature, the ranges of the (45)Sc chemical shift have been established for ScO(6) and ScO(8). The gradual change of the (45)Sc and (51)V NMR parameters with x confirms the formation of solid solutions in the process of synthesis of VNb(9(1-x))Ta(9x)O(25) and ScNb((1-x))Ta(x)O(4), in contrast to ScNb(2(1-x))Ta(2x)VO(9). The cation sublattice of ScNb((1-x))Ta(x)O(4) is found to be in octahedral coordination. The V sites in VNb(9(1-x))Ta(9x)O(25) are present in the form of slightly distorted tetrahedra. The (93)Nb NMR parameters have been obtained for VNb(9)O(25).  相似文献   

15.
Reaction of two equivalents of [(C(5)Me(4)Et)(2)U(CH(3))(Cl)] (6) or [(C(5)Me(5))(2)Th(CH(3))(Br)] (7) with 1,4-dicyanobenzene leads to the formation of the novel 1,4-phenylenediketimide-bridged bimetallic organoactinide complexes [{(C(5)Me(4)Et)(2)(Cl)U}(2)(mu-{N==C(CH(3))-C(6)H(4)-(CH(3))C==N})] (8) and [{(C(5)Me(5))(2)(Br)Th}(2)(mu-{N==C(CH(3))-C(6)H(4)- (CH(3))C==N})] (9), respectively. These complexes were structurally characterized by single-crystal X-ray diffraction and NMR spectroscopy. Metal-metal interactions in these isovalent bimetallic systems were assessed by means of cyclic voltammetry, UV-visible/NIR absorption spectroscopy, and variable-temperature magnetic susceptibility. Although evidence for magnetic coupling between metal centers in the bimetallic U(IV)/U(IV) (5f(2)-5f(2)) complex is ambiguous, the complex displays appreciable electronic communication between the metal centers through the pi system of the dianionic diketimide bridging ligand, as judged by voltammetry. The transition intensities of the f-f bands for the bimetallic U(IV)/U(IV) system decrease substantially compared to the related monometallic ketimide chloride complex, [(C(5)Me(5))(2)U(Cl){-N==C(CH(3))-(3,4,5-F(3)-C(6)H(2))}] (11). Also reported herein are new synthetic routes to the actinide starting materials [(C(5)Me(4)Et)(2)U(CH(3))(Cl)] (6) and [(C(5)Me(5))(2)Th(CH(3))(Br)] (7) in addition to the syntheses and structures of the monometallic uranium complexes [(C(5)Me(4)Et)(2)UCl(2)] (3), [(C(5)Me(4)Et)(2)U(CH(3))(2)] (4), [(C(5)Me(4)Et)(2)U{-N==C(CH(3))-C(6)H(4)-C==N}(2)] (10), and 11.  相似文献   

16.
Single crystals of the complex boride series Sc(2)FeRu(5-n)Rh(n)B(2) (n=1, 3, 4) were synthesized by arc-melting the elements in water-cooled copper crucibles under argon atmospheres and were chemically characterized by single-crystal XRD and EDX analyses. The new compounds are isotypic and crystallize in the tetragonal space group P4/mbm with Z=2, adopting a substitutional variant of the Ti(3)Co(5)B(2)-type structure. The magnetically active iron atoms are arranged in chains with intra- and interchain distances of about 3.02 and 6.60 A, respectively. Strong ferromagnetic interactions are observed for both Sc(2)FeRuRh(4)B(2) (64 valence electrons (VE), TC approximately 350 K, mu(a)=3.1 mu(B)) and Sc(2)FeRu(2)Rh(3)B(2) (63 VE, T(C) approximately 300 K, mu(a)=3.0 mu(B)), whereas antiferromagnetic interactions are found in the case of Sc(2)FeRu(4)RhB(2) (61 VE, T(N) approximately 10 K, mu(eff)=3.2): The magnetism of the entire Sc(2)FeRu(5-n)Rh(n)B(2) (0相似文献   

17.
The targeted hydrolysis of the 9,10-dihydro-9,10-diboraanthracene adduct (Me(2)S)HB(C(6)H(4))(2)BH(SMe(2)) (1) with 0.5 equiv of H(2)O leads to formation of the borinic acid anhydride [(Me(2)S)HB(C(6)H(4))(2)B](2)O (2) and thereby provides access to the field of unsymmetrically substituted 9,10-dihydro-9,10-diboraanthracenes. Compound 2 reacts with tBuC≡CH to give the corresponding vinyl derivative in an essentially quantitative conversion. Subsequent cleavage of the B-O-B bridge by LiAlH(4) with formation of hydridoborate functionalities is possible but is accompanied by partial B-C(vinyl) bond degradation. This situation changes when the related mesityl derivative [MesB(C(6)H(4))(2)B](2)O (7) is employed, which can be synthesized from BrB(C(6)H(4))(2)BBr (6) by treatment with 1 equiv of MesMgBr and subsequent hydrolysis. The reaction of 7 with LiAlH(4) in tetrahydrofuran (THF) furnishes Li[MesB(C(6)H(4))(2)BH(2)] (8); hydride elimination with Me(3)SiCl leads to formation of the THF adduct MesB(C(6)H(4))(2)BH(THF) (9·THF). Alternatively, 7 can be transformed into the bromoborane MesB(C(6)H(4))(2)BBr (10) by treatment with BBr(3). A Br/H-exchange reaction between 10 and Et(3)SiH yields the donor-free borane MesB(C(6)H(4))(2)BH (9), which forms B-H-B bridged dimers (9)(2) in the solid state. The vinyl borane MesB(C(6)H(4))(2)BC(H)=C(H)Mes (14) is accessible from MesC≡CH and either 9·THF or 9. Compared with the related compound Mes(2)BC(H)=C(H)Mes, the electronic absorption and emission spectra of 14 reveal bathochromic shifts of Δλ(abs)=17 nm and Δλ(em)=74 nm, which can be attributed to the rigid, fully delocalized π framework of the [MesB(C(6)H(4))(2)B] chromophore.  相似文献   

18.
Li(4)V(3)O(8) materials have been prepared by chemical lithiation by Li(2)S of spherical Li(1.1)V(3)O(8) precursor materials obtained by a spray-drying technique. The over-lithiated vanadates were characterised physically by using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and electrochemically using galvanostatic charge-discharge and cyclic voltammetry measurements in both the half-cell (vs. Li metal) and full-cell (vs. graphite) systems. The Li(4)V(3)O(8) materials are stable in air for up to 5 h, with almost no capacity drop for the samples stored under air. However, prolonged exposure to air will severely change the composition of the Li(4)V(3)O(8) materials, resulting in both Li(1.1)V(3)O(8) and Li(2)CO(3). The electrochemical performance of these over-lithiated vanadates was found to be very sensitive to the conductive additive (carbon black) content in the cathode. When sufficient carbon black is added, the Li(4)V(3)O(8) cathode exhibits good cycling behaviour and excellent rate capabilities, matching those of the Li(1.1)V(3)O(8) precursor material, that is, retaining an average charge capacity of 205 mAh g(-1) at 2800 mA g(-1) (8C rate; 1C rate means full charge or discharge of a battery in one hour), when cycled in the potential range of 2.0-4.0 V versus Li metal. When applied in a non-optimised full cell system (vs. graphite), the Li(4)V(3)O(8) cathode showed promising cycling behaviour, retaining a charge capacity (Li(+) extraction) above 130 mAh g(-1) beyond 50 cycles, when cycled in the voltage range of 1.6-4.0 V, at a specific current of 117 mA g(-1) (C/3 rate).  相似文献   

19.
Recently discovered catalytic reactions with ruthenium and lanthanide metal complexes have extended the scope of 1-alkynes as useful reagents. The specific formation of aryl-substituted (Z)-1,3-enzymes via the dimerization of HC(triple bond) CR(1) (R(1) = aryl) has been attained using dimeric lanthanide complexes, the catalytic activity of which appears to be unaffected by time. The dimerization of HC(triple bond) CR(2) (R(2) = t-Bu, SiMe(3)) catalyzed by Ru(cod)(cot)/PR(3) or RuH(2)(PPh(3))(3) produces a good yield of butatrienes (Z)R(2)CH=C=C=CHR(2) with a high degree of selectivity. Under certain conditions, HC(triple bond) C=SiMe(3) dimerizes to yield exclusively (Z)-M(3)Si-C(triple bond) C-CH=CH-SiMe(3). The hydration of HC(triple bond)CR(3) (R(3) = alkyl, aryl) catalyzed by RuCl(2)/PR'(3) or CpRuCl(PR"(3))(2) has realized the first example of anti-Markovnikov regioselectivity in an addition reaction of water that produces aldehydes R(3)CH(2)bond;CHO. The application of this reaction to propargylic alcohols has lead to their formal isomerization to alpha,beta-unsaturated aldehydes. In contrast, the addition of amines R(4)bond;NH(2) (R(4) = aryl) to HCtbond;CR(5) (R(5) = alkyl, aryl) conforms to Markovnikov's rule to produce ketimines R(5)bond;(C=NR(4))bond;CH(3) when catalyzed by a Ru(3)(CO)(12)/additive. Since the reaction can be performed in air without the need for any solvents, it enables the practical synthesis of aromatic ketimines, which are difficult to prepare by conventional methods. The synthesis of indoles using deactivated anilines is one practical application of this reaction. The mechanisms of some of these reactions have been analyzed in detail with the aid of theoretical calculations.  相似文献   

20.
The half-sandwich compounds [(eta(5)-C(5)Me(5))BeX] (X=Cl, 1 a; Br, 1 b), readily prepared from the reaction of the halides BeX(2) and M[C(5)Me(5)] (M=Na or K), are useful synthons for other (eta(5)-C(5)Me(5))Be organometallic compounds, including the alkyl derivatives [(eta(5)-C(5)Me(5))BeR] (R=Me, 2 a; CMe(3), 2 b; CH(2)CMe(3), 2 c; CH(2)Ph, 2 d). The latter compounds can be obtained by metathetical exchange of the halides 1 with the corresponding lithium reagent and exhibit NMR signals and other properties in accord with the proposed formulation. Attempts to make [(eta(5)-C(5)Me(5))BeH] have proved fruitless, probably due to instability of the hydride toward disproportionation into [Be(C(5)Me(5))(2)] and BeH(2). The half-sandwich iminoacyl [(eta(5)-C(5)Me(5))Be(C(NXyl)Cp')] and [(eta(5)-C(5)Me(4)H)Be(C(NXyl)Cp')]3, 6 where Xyl=C(6)H(3)-2,6-Me(2) and Cp'=C(5)Me(5) or C(5)Me(4)H, are formed when the beryllocenes [Be(C(5)Me(5))(2)], [Be(C(5)Me(4)H)(2)], and [Be(C(5)Me(5))(C(5)Me(4)H)] are allowed to react with CNXyl. Isolation of three different iminoacyl isomers from the reaction of the mixed-ring beryllocene [(eta(5)-C(5)Me(5))Be(eta(1)-C(5)Me(4)H)] and CNXyl, namely compounds 5 a, 5 b, and 6, provides compelling evidence for the existence in solution of different beryllocene isomers, generated in the course of two very facile processes that explain the solution dynamics of these metallocenes, that is the 1,5-sigmatropic shift of the Be(eta(5)-Cp') unit around the periphery of the eta(1)-Cp' ring, and the molecular inversion rearrangement that exchanges the roles of the two rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号