首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
利用多核Nd-Al双金属配合物可单独引发双烯烃聚合的特点,考察了烷基铝种类对丁二烯加聚过程的影响,并与一般混合稀土催化体系进行了比较.烷基铝对活性体催化活性的影响与其用量有关,低n(Al)/n(Nd)值时,活性次序为:AlMe3,AlEt3,HAlBui2>Al(C8H17)3>AlBui3;高n(Al)/n(Nd)值时,活性次序相反:AlMe3,AlEt3,HAlBui2<Al(C8H17)3<AlBui3.烷基铝链转移作用强弱次序为:HAlBui2≥AlEt3>AlBui3>AlMe3>Al(C8H17)3.根据聚丁二烯微观结构与其分子量的关系,可将烷基铝对聚丁二烯顺式含量的影响分为3类:(1)AlEt3和Al(C8H17)3;(2)HAl-Bui2和AlBui3;(3)AlMe3.所得结果有助于对稀土催化定向聚合过程的深入了解.  相似文献   

2.
用膨胀计研究了Nd(OPr^i)2Cl-AlEt3均相稀土催化剂异戊二烯聚合动力学。在实验条件下,本体系显示稳态聚合特征;聚合速度对单体浓度和催化剂浓度均为一级关系,即聚合速度方程为Rp-Kp[Nd][M];本体系总的活化能Ea为57.4kJ/mol。  相似文献   

3.
用膨胀计研究了Nd(OPri)2Cl-AlEt3均相稀土催化剂异戊二烯聚合动力学.在实验条件下,本体系显示稳态聚合特征;聚合速度对单体浓度和催化剂浓度均为一级关系,即聚合速度方程为Rp=Kp[Nd][M];本体系总的活化能Ea为57.4kJ/mol.  相似文献   

4.
本文研究了以甲苯为溶剂,AlCl3和BF3·OEt2为引发剂,1,3-戊二烯(PD)与苯乙烯(St)的阳离子共聚合反应,并用红外光谱测定聚合物的微观结构。由共聚单体PD和St加入顺序的不同可生成无规共聚物P(PD-co-St)和接枝共聚物P(PD-g-St)和P(St-g-PD)。无论是由AlCl3引发聚合反应,还是由BF3·OEt2引发聚合反应,St上的碳阳离子的活性都高于PD上碳阳离子的活性。由AlCl3首先引发PD进行聚合反应,结束后再引入St时,聚合体系不能引发St聚合反应;相反AlCl3首先引发St聚合后的体系能继续引发PD的聚合反应。BF3·OEt2无论先引发St或是PD,都能在聚合反应完成后接着引发另一单体而生成接枝共聚物P(PD-g-St)和P(St-g-PD)。二苯醚与烯丙基氯的加入,提高了碳阳离子的稳定性,增加了聚合物的分子量,但降低了碳阳离子的活性,使得聚合反应的产率降低,同时对St和PD碳阳离子的活性次序无明显影响  相似文献   

5.
利用多核Nd-Al双金属配合物可单独引发双烯聚合的特点,考察了烷基铝种类对丁二烯加聚过程的影响,并与一般混合稀土催化体系进行了比较,烷基铝对活性体催化活性的影响与其用量有关,低n(Al)n(Nd)值时,活性次序为:AlMe3,AlEt3,HAlB2〉Al(C8H17)3〉AlBu3;高n(Al)/n(Nd)值时,欠序相反,AlMe3AleT3,HAlBu2〈Al(C8h1703〈AlBu3,烷基铝  相似文献   

6.
Nd(i-PrO)_2Cl-AlEt_3均相二元催化剂异戊二烯聚合动力学──Ⅲ.AlEt_3的链转移作用蔡小平,龚志,王佛松朱行洁,李秀华(中国科学院长春应用化学研究所长春130022)(吉林化工集团公司研究院吉林)关键词异戊二烯,聚合动力学,均相催化...  相似文献   

7.
考察了在AlEtCl2/t-BuCl引发体系作用下的α-蒎烯阳离子聚合行为.结果表明,t-BuCl与AlEtCl2复合后,由于生成(CH3)C正离子而使引发活性增大.但t-BuCl的引人对产物分子量及其分布影响不大,产物主要由二、三聚体组成.聚合过程的动力学研究表明,α-蒎烯在进行阳离子聚合时容易发生链终止反应而导致单体转化率和产物分子量较低.α-蒎烯在聚合反应的同时伴随着异构化反应,用制备GPC分离出异构化产物,然后经1HNMR测定其结构.  相似文献   

8.
Y(AcAc)3/n—BuMgCl络合催化ε—己内酯本体聚合   总被引:3,自引:0,他引:3  
应用稀土乙酰基丙酮盐[Y(AcAc)3]与格氏试剂(n-BuMgCl)络合催化ε-己内酯聚合。研究了单体与催化剂摩尔化、助催化剂用量、温度、时间及第三组份等条件对聚合反应的影响。结果表明,该催化体系具有较好的反应活性。增加助催化剂用量或选择合适的第三组份如二甲基亚砜能有效地提高单体转化率与聚合物分子量。分子量分布为2.1。X-衍射分析表明聚己内酯为结晶性聚合物。  相似文献   

9.
研究了第二过渡金属化合物对TiCl4/AleT1.46cL1.54催化丁二烯环化三聚的多金属协同效应。结果表明,极少量的第二过渡金属化合物,如Cr,(acac)3,Mn(acac)3,NiCl2,ZrCl4等加入TiCl4/AlEt1.46Cl1.54体系后不同程度地提高了丁二烯环化三聚的选择性,并改变了体系的最大速率和催化剂效率。  相似文献   

10.
比较了AlCl_3和AlCl_3/SbCl_3复合体系的α-蒎烯/苯乙烯阳离子共聚反应及产物的摩尔质量分布。结果表明,由于用AlCl_3体系两种单体活性差大而难以共聚,用AlCl_3/SbCl_3复合体系,苯乙烯聚合速率相对减小,而α-蒎烯聚合速率增大,加之苯乙烯的共催化剂作用,加速α-蒎烯聚合,可使α-蒎烯与苯乙烯进行有效共聚。考察了[Sb]/[Al]比、催化剂浓度、单体投料比等对共聚体系α-蒎烯、苯乙烯转化速率及产物M_n的影响。  相似文献   

11.
Nazarov cyclization is an important and versatile method for the synthesis of five‐membered carbocycles, and extensive studies have been conducted to optimize the reaction. Among recent studies, several trends are recognized. One is the combination of different reactions with Nazarov cyclization in a one‐pot reaction system which enables the preparation of unique cyclization products. The second is the use of a transition‐metal catalyst, though Lewis or Brønsted acids have generally been used for the reaction. The third is the realization of the asymmetric Nazarov cyclization. The fourth is the base‐catalyzed Nazarov cyclization. Furthermore, several useful protocols for realizing Nazarov cyclization have also been developed. The recent progress on Nazarov cyclizations is summarized in Section 2. Section 3 is our chronicle in this field. We focused on the use of iron as the catalyst in Nazarov cyclizations and ionic liquids as solvents: Nazarov cyclization of thiophene derivatives using FeCl3 as the catalyst was accomplished and we succeeded in demonstrating the first example of an iron‐catalyzed asymmetric Nazarov reaction. We next established Nazarov cyclization of pyrrole or indole derivatives using Fe(ClO4)3·Al2O3 as the catalyst with high trans selectivities in excellent yields. Since the cyclized product was reacted with a vinyl ketone in the presence of the same iron salt, the system allowed realization of the sequential type of Nazarov/Michael reaction of pyrrole derivatives. Furthermore, we demonstrated the recyclable use of the iron catalyst and obtained the desired Nazarov/Michael reaction products in good yields for five repetitions of the reactions without any addition of the catalyst using an ionic liquid, [bmim][NTf2], as the solvent. We expect that the iron‐catalyzed Nazarov cyclization, in particular, in an ionic liquid solvent might become a useful method to synthesize functional molecules that include cycloalkene moieties.  相似文献   

12.
[reaction: see text] Two new fluorescent ethyl 3-aryl-1-methyl-8-oxo-8H-anthra[9,1-gh]quinoline-2-carboxylates have been synthesized for the first time by cyclization of 3-(arylidene-amino)-benzo[de]anthracen-7-ones with 3-oxo-butyric acid ethyl ester. The cyclization reaction was investigated with and without concentrated hydrochloric acid as a catalyst. New dyes have shown a very good orientation parameter (S(A)) in nematic liquid crystal, indicating a high potential for application in liquid crystal displays.  相似文献   

13.
The free‐radical cyclopolymerization of diallyl ether (1) and methyl α‐(allyloxymethyl)acrylate (2) has been modeled with the B3LYP/6‐31G* methodology, by making use of model compounds for the growing radicals. The cyclization of both monomers is exo, with activation barriers of 5.33 and 9.82 kcal/mol, respectively. To account for the polymerizabilities of these monomers, competing reactions have also been modeled. Although both monomers have a lower barrier for homopolymerization than for cyclization, cyclization dominates due to entropy. This explains the high cyclopolymerization vs. homopolymerization of monomer 2, although its monofunctional counterpart has been reported to homopolymerize well. It has also been shown that the degradative chain transfer by H‐abstraction from the allylic carbon is not effective with this monomer. Poor cyclopolymerization of the monomer 1 has been demonstrated by modeling the degradative chain transfer by H‐abstraction from the allylic carbon, which has been shown to compete very efficiently with polymerization reactions. Additionally, intermolecular propagation reaction has been shown to be facile due to cyclization, since the attacking monomer adopts a cyclic structure. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

14.
The development of efficient methods for the indole synthesis catalyzed by Cu(II) salts and its applications were investigated. Cu(OAc)(2) has been proved to be the best catalyst for the synthesis of various 1-p-tolylsulfonyl or 1-methylsulfonylindoles, which have both electron-withdrawing and electron-donating groups on the aromatic ring and C2 position of indoles. For the primary aniline derivatives, Cu(OCOCF(3))(2) showed good activities, while Cu(OAc)(2) was a good catalyst for the cyclization of secondary anilines. This methodology could be applied to the sequential cyclization reaction for the compounds which have the electrophilic part in the same molecule. By prior treatment with KH, the sequential cyclization was realized to provide the tricyclic ring systems, but it was limited to five- and six-membered rings for the second cyclization. Finally, formal and total synthesis of hippadine with the Cu(II)-promoted indole synthesis as the key step was accomplished.  相似文献   

15.
Asymmetric conjugate addition of ethyl 4-chloro-3-oxobutanoate to nitroalkenes and subsequent intramolecular cyclization had been developed. This one-pot reaction provided tetronic acid derivatives in good yields and with excellent enantioselectivities. 6′-Demethyl quinine was found to be the best catalyst for the conjugate addition and AcOLi was identified as the best base for the intramolecular cyclization. Various β-aryl, heteroaryl, and alkyl nitroalkenes are generally applicable in the reaction.  相似文献   

16.
Monosubstituted isoquinolines and pyridines have been prepared in good to excellent yields via coupling of terminal acetylenes with the tert-butylimines of o-iodobenzaldehydes and 3-halo-2-alkenals in the presence of a palladium catalyst and subsequent copper-catalyzed cyclization of the intermediate iminoalkynes. In addition, isoquinoline heterocycles have been prepared in excellent yields via copper-catalyzed cyclization of iminoalkynes. The choice of cyclization conditions is dependent upon the nature of the terminal acetylene that is employed, as only aryl and alkenyl acetylenes cyclize under the palladium-catalyzed reaction conditions that have been developed. However, aryl-, vinylic-, and alkyl-substituted acetylenes undergo palladium-catalyzed coupling and subsequent copper-catalyzed cyclization in excellent yields. The total synthesis of the isoquinoline natural product decumbenine B has been accomplished in seven steps and 20% overall yield by employing this palladium-catalyzed coupling and cyclization methodology.  相似文献   

17.
In our continuing quest to develop a metal–organic framework (MOF)‐catalyzed tandem pyrrole acylation–Nazarov cyclization reaction with α,β‐unsaturated carboxylic acids for the synthesis of cyclopentenone[b]pyrroles, which are key intermediates in the synthesis of natural product (±)‐roseophilin, a series of template‐induced Zn‐based ( 1–3 ) metal‐organic frameworks (MOFs) have been solvothermally synthesized and characterized. Structural conversions from non‐porous MOF 1 to porous MOF 2 , and back to non‐porous MOF 3 arising from the different concentrations of template guest have been observed. The anion–π interactions between the template guests and ligands could affect the configuration of ligands and further tailor the frameworks of 1–3 . Futhermore, MOFs 1–3 have shown to be effective heterogeneous catalysts for the tandem acylation–Nazarov cyclization reaction. In particular, the unique structural features of 2 , including accessible catalytic sites and suitable channel size and shape, endow 2 with all of the desired features for the MOF‐catalyzed tandem acylation–Nazarov cyclization reaction, including heterogeneous catalyst, high catalytic activity, robustness, and excellent selectivity. A plausible mechanism for the catalytic reaction has been proposed and the structure–reactivity relationship has been further clarified. Making use of 2 as a heterogeneous catalyst for the reaction could greatly increase the yield of total synthesis of (±)‐roseophilin.  相似文献   

18.
Synthetic processes leading to hydrophilic biodegradable polymers for bio-inspired applications were investigated from a kinetic point of view. In accordance with the reported mechanism of ester aminolysis, polycondensation reactions of α-amino-ω-esters, diesters, and diamines resulted markedly dependent on the basicity of the alkoxide leaving-group, being relatively fast for penthachlorophenate monomers. Furthermore, experimental data concerning the homopolycondensation of penthachlorophenyl α-amino-ω-oligo(ethyleneglycol) succinates of different degree of oligomerization clearly showed the existence of concurrent first and second-order processes, which were attributed to the intramolecular cyclization and intermolecular polycondensation reaction, respectively. In contrast to theoretical predictions based on the collision theory, however, minor incidence of the cyclization reaction was shown by the shortest monomers, thus suggesting a significant kinetic effect due to steric hindrance and solvent-reagent interactions. Analysis of the base-catalyzed Michael-type addition of α,ω-oligo(oxyethylene)dithiols to methyl (meth)acrylate allowed for the optimization of the relevant polymerization process involving hydrophilic diacrylates. Interestingly, very low reaction rates were determined for methacrylic components, supposedly because of steric and electronic factors connected to the presence of the α-methyl group. Minor effects on the reaction rate were also induced by solvent polarity and catalyst nature.  相似文献   

19.
以聚苯胺和六氟磷酸为原料制备了六氟磷酸/聚苯胺(HPF6/PANI)催化剂,研究了该催化剂在邻苯二胺与酮环化缩合反应合成1,5-苯并二氮杂化合物中的催化活性,考察了催化剂用量、温度、溶剂对反应的影响及催化剂的重复使用性.结果表明,该催化剂具有较高的催化活性及较好的重复使用性.  相似文献   

20.
串联反应能够减少反应步骤、简化操作、降低成本、实现高效率转化,符合原子经济性和绿色化学理念.特别是有机催化的不对称串联环化反应以一锅法连续催化多个化学反应,为高效合成多手性中心环状结构提供了新方法.不对称Michael/环化串联反应是构建光学活性状化合物的常用方法之一,近些年,各种有机小分子催化剂应用于不对称Michael/环化串联反应的报道不断增加,并且取得了重大进展.我们根据不同的催化剂类型综述了近5年来关于不对称Michael/环化串联反应的研究进展,并对有机催化不对称Michael/环化串联反应的发展趋势进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号