首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 843 毫秒
1.
利用ATR单点全反射技术以及XPS(X光电子能谱 )测试方法对聚苯乙烯 聚二甲基硅氧烷嵌段 (PS b PDMS)和接枝共聚物 (PS g PDMS)进行了研究 ,发现聚合物膜表面存在着有机硅富集层 ,PS b PDMS有机硅表面富集程度要高于PS g PDMS ,而且不同溶解度参数的成膜溶剂和不同极性的成膜介质对有机硅富集程度有一定的影响 .  相似文献   

2.
利用DSC、DMA、TEM和XPS对[PSF-PDMS-PHS]n/PSF共混物的相容性及表面组成进行了研究.结果表明,PDMS在共混物表面的富集与PSF均聚物和[PSF-PDMS-PHS]n中硬段的相容性有关;PDMS在相容的共混物体系表面的富集与对应的多嵌段共聚物组成基本相近;不相容共混物体系表面PDMS的富集程度相对较高,当共混物本体中有机硅含量从1%增至5%,表面层PDMS的含量迅速增加,可达到嵌段共聚物中PDMS的含量.  相似文献   

3.
利用XPS对聚二甲基硅氧烷与聚砜或/和聚对羟基苯乙烯组成的二元和三元多嵌段和接枝共聚物及其共混物进行了研究。结果表明溶液成果的聚合物样品的表面都存在有机硅富集,共混物的表面富集程度等于接枝共聚物,更高于多嵌段共聚物,讨论了有机硅含量和键接结构对有机硅表面富集的影响。  相似文献   

4.
谢建军 《色谱》1999,17(3):232
用气液色谱法测定了聚二甲基硅氧烷(PDMS)/溶剂、聚甲基丙烯酸甲酯(PMMA)/溶剂体系在不同温度下以质量分数表示的无限稀溶剂活度系数和Flory-Huggins相互作用参数。应用UNIFAC和UNIFAC-FV模型对PDMS/溶剂、PMMA/溶剂体系中以质量分数表示的无限稀溶剂活度系数进行了估算。结果表明,用这两个模型预测PDMS/溶剂、PMMA/溶剂体系中的无限稀溶剂活度系数有待修正或采用其它模型进行估算。  相似文献   

5.
Xie J 《色谱》1999,17(3):232-235
 用气液色谱法测定了聚二甲基硅氧烷(PDMS)/溶剂、聚甲基丙烯酸甲酯(PMMA)/溶剂体系在不同温度下以质量分数表示的无限稀溶剂活度系数和Flory-Huggins相互作用参数。应用UNIFAC和UNIFAC-FV模型对PDMS/溶剂、PMMA/溶剂体系中以质量分数表示的无限稀溶剂活度系数进行了估算。结果表明,用这两个模型预测PDMS/溶剂、PMMA/溶剂体系中的无限稀溶剂活度系数有待修正或采用其它模型进行估算。  相似文献   

6.
利用DMA,TEM和SAXS对以聚苯醚(PPO)为硬段、聚对羟基苯乙烯(PHS)为半硬段和聚二甲基硅氧烷(PDMS)为软段的三元多嵌段共聚物(?)PPO-PDMS-PHS(?)_n的形态结构和性能进行了研究.结果表明,(?)PPO-PDMS-PHS(?)_n以三种嵌段相容相为连续相,PPO与PHS的相容相和PDMS相为两种分散相,其tanδ随温度变化曲线在-100℃至200℃一直是一很高的平台,并具有优异的力学性能,较好地解决了含有机硅类嵌段共聚物强度低的弱点,同时又保留了嵌段共聚物微相分离的特性.  相似文献   

7.
利用DMA, TEM和SAXS对以聚苯醚(PPO)为硬段、聚对羟基苯乙烯(PHS)为半硬段和聚二甲基硅氧烷(PDMS)为软段的三元多嵌段共聚物[-PPO-PDMS-PHS-]n以三种嵌段相容相为连续相, PPO与PHS的相容相和PDMS相为两种分散相, 其tan δ随温度变化曲线在-100℃至200℃一直是一很高的平台, 并具有优异的力学性能, 较好地解决了含有机硅类嵌段共聚物强度低的弱点, 同时又保留了嵌段共聚物微相分离的特性。  相似文献   

8.
利用乙酸钯和2,2’-联吡啶组成的催化剂体系催化一氧化碳和苯乙烯交替共聚制备聚(1-氧代-2-苯基丙撑),考察了组成催化剂的2,2‘-联吡啶和对甲苯磺酸与钯(Ⅱ)的摩尔比对催化活性的影响,同时考察了甲醇用量,溶剂,反应温度和时间等对该催化反应的影响。  相似文献   

9.
聚二甲基硅氧烷表面亲水性的研究   总被引:4,自引:0,他引:4  
李永刚  张平  吴一辉  宣明 《分析化学》2006,34(4):508-510
为了使聚二甲基硅氧烷(PDMS)具有较稳定的亲水性表面,利用氧等离子体技术对PDMS表面进行处理。研究了氧等离子体处理PDMS表面的时间、功率、氧气流量等参数对表面亲水性的影响,通过接触角测量和X-射线光电子能谱(XPS)对处理效果进行了评价。实验表明:PDMS经氧等离子体处理后放置700 h的表面接触角为72°,达到了持久改性的目的;XPS分析表明,表面亲水性的改善主要是由于表面极性成分的增加,最后讨论了氧等离子体处理PDMS表面的改性机理。  相似文献   

10.
聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究   总被引:17,自引:0,他引:17  
研究了紫外光化学表面改性对聚二甲基硅氧烷(PDMS)微流控芯片的片基间粘接力及毛细管通道电渗流性能的影响.PDMS片基经紫外光射照后,粘接力增强,可实现PDMS芯片的永久性封合,同时亲水性得到改善,通道中的电渗流增大.与文献报道的等离子体表面处理方法比较,采用紫外光表面处理,设备简单,操作方便,耗费少,是一种简单易行的聚二甲基硅氧烷芯片表面处理方法.  相似文献   

11.
Libraries of 3‐aminopropyl‐terminated poly(dimethylsiloxane) (APT–PDMS) and poly(?‐caprolactone)–poly(dimethylsiloxane)–poly(?‐caprolactone) (PCL—PDMS–PCL) triblock copolymers were synthesized. Preliminary experiments were carried out to select an appropriate catalyst and route for the poly(dimethylsiloxane) synthesis, and trial experiments were conducted to verify the successful synthesis of the intended polymer compositions. Then, a series of APT–PDMS oligomers were synthesized with an automated combinatorial high‐throughput synthesis system to cover a molecular weight range of 2500–50,000 g/mol. Trial PCL—PDMS–PCL triblock copolymers were synthesized with the automated reactor system and characterized in detail with rapid gel permeation chromatography, high‐throughput Fourier transform infrared, nuclear magnetic resonance, and differential scanning calorimetry. Finally, two library synthesis experiments were carried out in which the lengths of both the poly(dimethylsiloxane) and poly(?‐caprolactone) blocks in the PCL—PDMS–PCL triblock copolymers were varied. The results obtained from these experiments demonstrated that it was possible to synthesize libraries of well‐defined APT–PDMS oligomers and PCL—PDMS–PCL triblock copolymers with an automated high‐throughput system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4880–4894, 2006  相似文献   

12.
Novel copolymers of polyurethane (PU) were prepared by direct transurethanetion reaction of a commercial PU with polydimethylsiloxanes (PDMS, MW 1000, 5000, and 10,000) containing hydroxyl end-groups. Transurethanetions with different mass ratios of hydrophobic PDMS to hydrophilic PU chains (PDMS1000–PU: 43:57, 67:33, 71:29, and 80:20; PDMS5000–PU: 37:63, and 51:49; PDMS10000–PU: 51:49) were carried out in solution at 65 and 100 °C. In catalyzed reactions, dibutyltin dilaurate (SnC32H64O4) was used to promote bond breaking in the PU chain and accelerate the reaction between hydroxyl end-groups of PDMS and regenerated isocyanates of PU. The chemical structures of the prepared copolymers were comprehensively characterized by 1H, 13C, and 29Si NMR spectroscopies. According to elemental analysis, the content of PDMS varied between 3 wt.% and 16 wt.%, and results obtained from the 1H NMR spectroscopy were in good agreement with the results of elemental analysis. Increased length of the hydrophobic chain increased the content of PDMS in the copolymer. The GPC results showed that molar masses of the PUPDMS copolymers were lower than the molar mass of the starting PU. The glass transitions (Tg) of the copolymers were shifted to lower temperature as compared with Tg of the starting polyurethane. ATR FTIR spectroscopy showed the surface of the copolymer films to be enriched with siloxane groups and, according to electron microscopy, it was textured with microspheres. The static contact angles for copolymer films measured with deionized water ranged from 94° to 117°. The different structural, thermal and surface properties of the PUPDMS copolymers as compared with PU indicated that transurethanetion had taken place.  相似文献   

13.
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001  相似文献   

14.
采用乙烯基封端的聚 (二甲基硅氧烷 )与溴化氢反应制得末端含有C Br的双官能聚 (二甲基硅氧烷 ) ,以此聚 (二甲基硅氧烷 )大分子为引发剂 ,CuCl为催化剂 ,4 ,4′ 二 (5 壬基 ) 2 ,2′ 联吡啶为配体 ,通过原子转移自由基聚合法 ,制得分子量和结构可控的聚苯乙烯 b 聚硅氧烷 b 聚苯乙烯 (PSt b PDMS b PSt)共聚物 .  相似文献   

15.
Polyetheretherketone-polydimethylsiloxane (PEEK–PDMS) block copolymers were synthesized from the condensation of dimethylamino terminated PDMS and hydroxy terminated PEEK oligomers in 1-chloronapthalene. Yields for block copolymers synthesised from low molecular weight PDMS oligomers were good but yields were significantly reduced when higher molecular weight PDMS oligomers were used. This was related to the limited solubility of higher molecular weight PDMS in the reaction solvent. Differential scanning calorimetry (DSC) studies indicated that phase separation of the block copolymers occurred at very short segment length (M?n < 4000). A depression in the crystallinity of both the PEEK and PDMS phases in the block copolymer was observed. Thermogravimetric analysis (TGA) studies indicated that the PEEK–PDMS block copolymers displayed insufficient thermo-oxidative stability to be melt-processed successfully in PEEK based blends.  相似文献   

16.
Model diblock copolymers of poly(1,4‐butadiene) (PB) and poly(dimethylsiloxane) (PDMS), PB‐b‐PDMS, were synthesized by the sequential anionic polymerization (high vacuum techniques) of butadiene and hexamethylciclotrisiloxane (D3) in the presence of sec‐BuLi. By homogeneous hydrogenation of PB‐b‐PDMS, the corresponding poly(ethylene) and poly(dimethylsiloxane) block copolymers, PE‐b‐PDMS, were obtained. The synthesized block copolymers were characterized by nuclear magnetic resonance (1H and 13C NMR), size‐exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and rheology. SEC combined with 1H NMR analysis indicates that the polydispersity index of the samples (Mw/Mn) is low, and that the chemical composition of the copolymers varies from low to medium PDMS content. According to DSC and TGA experiments, the thermal stability of these block copolymers depends on the PDMS content, whereas TEM analysis reveals ordered arrangements of the microphases. The morphologies observed vary from spherical and cylindrical to lamellar domains. This ordered state (even at high temperatures) was further confirmed by small‐amplitude oscillatory shear flow tests. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1579–1590, 2006  相似文献   

17.
This article demonstrates the successful fabrication of thin‐film‐composite (TFC) membranes containing well‐defined soft‐hard‐soft triblock copolymers. Based on “hard” polyimide (PI) and “soft” polydimethylsiloxane (PDMS), these triblock copolymers (PDMS‐b‐PI‐b‐PDMS), were prepared via condensation polymerization, and end‐group allylic functionalization to prepare the polyimide component and subsequent “click” coupling with the soft azido functionalized PDMS component. The selective layer consisted of pure PDMS‐b‐PI‐b‐PDMS copolymers which were cast onto a precast crosslinked‐PDMS gutter layer which in turn was cast onto a porous polyacrylonitrile coated substrate. The TFC membranes' gas transport properties, primarily for the separation of carbon dioxide (CO2) from nitrogen (N2), were determined at 35 °C and at a feed pressure of 2 atm. The TFC membranes showed improvements in gas permselectivity with increasing PDMS weight fraction. These results demonstrate the ability for glassy, hard polymer components to be coated onto otherwise incompatible surfaces of highly permeable soft TFC substrates through covalent coupling. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3372–3382  相似文献   

18.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号