首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于对断裂力学常用实验方法的研究,结合界面断裂问题的特殊性,以断裂力学为理论基础,通过能量释放率建立了界面断裂测量的实验分析方法,并且利用文献中的实验数据进行了验证,取得了良好的一致性.该方法通过测量试验件的载荷位移关系,利用裂纹扩展过程中的能量变化关系得到该裂纹长度下的临界能量释放率;在此基础上,根据试件的阻抗能量曲线预测结构的最大承载能力.该方法以能量释放率为理论基础,为界面裂纹的强度分析提供了合理的手段,基于能量角度建立的实验分析方法也具有良好的实用性和适用性.  相似文献   

2.
平面应变下紧凑拉伸试样的动态断裂韧性的实验研究   总被引:1,自引:0,他引:1  
材料的动态断裂韧性是衡量材料在动载荷作用下抵杭裂纹扩展能力的重要指标,以往的材料动态断裂韧性测试多采用三点弯曲试样,而针对紧凑拉伸试样的动态断裂韧性研究很少.本文将紧凑拉伸试样(即CT试样)简化成等效弹簧质量模型,得到了CT试样动态应力强度因子的近似表达式.对Hopkinson压杆装置进行了改进,利用改进后的实验装置进...  相似文献   

3.
4.
Piezoelectric materials have widespread applications in modern technical areas such as mechatronics, smart structures or microsystem technology, where they serve as sensors or actuators. For the assessment of strength and reliability of piezoelectric structures under combined electrical and mechanical loading, the existence of cracklike defects plays an important role. Meanwhile, piezoelectric fracture mechanics has been established quite well, but its application to realistic crack configurations and loading situations in piezoelectric structures requires the use of numerical techniques as finite element methods (FEM) or boundary element methods (BEM). The aim of this paper is to review the state of the art of FEM to compute the coupled electromechanical boundary value problem of cracks in 2D and 3D piezoelectric structures under static and dynamic loading. In order to calculate the relevant fracture parameters very precisely and efficiently, the numerical treatment must account for the singularity of the mechanical and electrical fields at crack tips. The following specialized techniques are presented in detail (1) special singular crack tip elements, (2) determination of intensity factors K I K IV from near tip fields, (3) modified crack closure integral, (4) computation of the electromechanical J-integral, and (5) exploitation of interaction integrals. Special emphasis is devoted to a realistic modeling of the dielectric medium inside the crack, leading to specific electric crack face boundary conditions. The accuracy, efficiency, and applicability of these techniques are examined by various example problems and discussed with respect to their advantages and drawbacks for practical applications.  相似文献   

5.
In this paper, two-dimensional plane strain finite element analyses of the active repair for cracked structures by using multi-layered piezoelectric patches have been studied. The reductions of stress intensity factors and strain energy density factor at the crack tips are obtained. Also, the repair voltages for various conditions are obtained for estimating the repair performances. Lower repair voltage is a better choice because it is low-energy-consuming and safer for the operation. From the results of numerical fracture mechanics, it shows the crack contact conditions must be considered in the analysis. However, the friction on the crack has few effects on the repair performances for this mode-I dominated case. The better design choices for the piezoelectric patch are as follows: increasing the layer number, increasing the patch length, and reducing the patch thickness. In additions, it is not a good idea to use higher input voltage that is larger than the repair voltage because it will enlarge the crack open near the crack tip. Too long patch length has no advantage for the active repair.  相似文献   

6.
中心直裂纹平台巴西圆盘复合型动态应力强度因子   总被引:2,自引:0,他引:2  
为了指导用中心直裂纹平台巴西圆盘(CSTFBD)试样进行岩石复合型动态断裂 试验,利用有限元法首先验证了文献中对中心直裂纹巴西圆盘(CSTBD)得到的有关结果,分析 比较了不同无量纲裂纹长度(即裂纹半长和圆盘半径之比)时两种圆盘的I, II型动态应力 强度因子的时间历程,发现两者的差异大部分在10{\%}以内,同时验证了该文数值方法的可 靠性. 然后讨论了CSTFBD试样I, II型动态应力强度因子的复合比、起裂角以及纯II型加 载角. 研究成果可为复合型动态断裂试验中CSTFBD试样的加工、试样上应变片的粘贴、起裂 方向和起裂时间的估计等提供参考.  相似文献   

7.
基于线弹性断裂力学中I型裂纹的欧文解答,解析推导了在单向拉伸作用下无限大平板中I型裂纹尖端应变梯度场,建立了应变梯度与裂纹扩展之间的关联;基于挠曲电效应建立了电极化强度与应变梯度之间的力电耦合关系,提出了一种利用应变梯度传感器监测I型裂纹的方法,获知裂纹尖端坐标和裂纹扩展长度.本研究拟为应用应变梯度传感器对工程结构中裂纹扩展的实时监测提供初步的理论依据及方法.挠曲电感应技术在结构健康监测领域前景广阔.  相似文献   

8.
压电复合材料粘接界面断裂有限元模拟   总被引:1,自引:1,他引:0  
根据数字化FRMM(Fix-Ratio Mix-Mode)断裂试验,得到了压电复合材料试件的断裂韧性和位移及应变场。本文在试验的基础上,通过非线性有限元软件ABAQUS及用户子程序UMAT进行了模拟分析,采用基于损伤力学的粘聚区模型(CZM)对压电复合材料界面的起裂和脱胶扩展进行了分析,并与VCCT方法进行了比较。计算得到的荷载位移曲线更接近于试验结果,但在裂纹扩展路径上的吻合需要对粘聚区法则进一步修正。通过进一步对CZM参数进行分析,表明界面粘结强度和界面刚度对计算结果的影响很大。研究结果表明,粘聚区模型可以很好地表征压电复合材料弱粘接界面脱胶断裂问题。  相似文献   

9.
李炼  罗林  吴礼舟  王启智 《爆炸与冲击》2018,38(6):1218-1230
针对平台圆环构型的优点, 提出偏心圆孔单裂纹平台圆盘(cracked eccentrically holed flattened disc, CEHFD), 该试样具有更长的断裂路径。利用霍普金森压杆加载系统, 径向冲击CEHFD试样, 完成Ⅰ型动态断裂实验。砂岩试样表面粘贴应变片和裂纹扩展计, 用于监测裂纹动态起裂、扩展和止裂的全过程。实验表明, 在整个断裂过程中, 裂纹非匀速扩展, 裂纹扩展速度在裂纹起裂后加速上升, 在裂纹止裂前有明显的减速, 与地震时断层的动态破裂全过程完全吻合。采用实验-数值-解析法得到动态应力强度因子, 其时间历程呈现先增大后减小的趋势。根据断裂过程不同时刻, 得到相应的动态起裂韧度、扩展韧度及止裂韧度。在动态断裂全过程中, 动态扩展韧度为速度的函数, 变化趋势与速度一致, 随着时间先增大后减小; 动态起裂韧度大于动态止裂韧度, 止裂韧度随着裂纹最大扩展速度的增大而降低, 并且有较大的离散性。  相似文献   

10.
This paper presents a combined numerical and experimental study of compliance rate change of Tapered Double Cantilever Beam (TDCB) specimens for Mode-I fracture of hybrid interface bonds. The easily machinable TDCB specimen, which is designed to achieve a constant rate of compliance change with respect to crack length, is developed for Mode-I fracture tests of hybrid material bonded interfaces, such as wood bonded to fiber-reinforced plastic (FRP) composite. The linearity of compliance crack-length relationship of the specimen is verified by both Rayleigh–Ritz method and finite element analysis. An experimental compliance calibration program for specimens with wood–wood and FRP–FRP bonded interfaces is carried out, and a constant rate change of compliance with respect to crack length is obtained for a specific range of crack length. Fracture tests are further performed using TDCB specimens for wood–wood and wood–FRP bonded interfaces to determine the critical loads for crack initiation and crack arrest, and using the constant compliance rate change of the specimens determined by experiment or analysis, the respective critical strain energy release rates, or fracture energies, are obtained. This study indicates that the constant compliance rate change obtained from experiment or finite element analysis for linear-slope TDCB specimens can be used with confidence for fracture studies of hybrid material interface bonds.  相似文献   

11.
Dynamic fracture initiation toughness of marble was tested using two types of the holed-cracked flattened Brazilian disc (HCFBD) specimens, which were diametrically impacted at the flat end of the disc by the split Hopkinson pressure bar (SHPB) of 100 mm diameter. One type of the discs is geometrically similar with different outside diameter of 42 mm, 80 mm, 122 mm and 155 mm respectively, and with crack length being half the diameter; another type of the discs has identical 80 mm diameter and different crack length. Issues associated with determination of the stress wave loading by the SHPB system and the crack initiation time in the disc specimen were resolved using strain gage technique. The stress waves recorded on the bars and the disc failure patterns are shown and explained. The tested dynamic fracture toughness increases obviously with increasing diameter for the geometrically similar HCFBD specimens. It changes moderately for the one-size specimens of identical diameter and different crack length. The size effect of rock dynamic fracture toughness is mainly caused by the fracture process zone length l and fracture incubation time τ, the latter being an additional influencing factor for the dynamic loading as compared with the counterpart static situation. Hence a method is proposed to determine a unique value for the dynamic fracture initiation toughness, the approach takes average of the local distribution and time history for dynamic stress intensity factor in the spatial-temporal domain, which is defined by l and τ jointly. In this way the dynamic size effect is minimized.  相似文献   

12.
The fracture mechanics of electromechanical materials has been investigated for well over a decade, yet there still exists controversy over the appropriate crack face boundary conditions for non-conducting cracks. In this paper an experimental protocol for measuring the energy release rate in a non-linear reversible electromechanical body is proposed and summarized. The potential results from the proposed experimental approach are capable of shedding light on the true physical nature of the conditions prevailing at the crack surface and in the space within the crack. The experimental procedure is simulated numerically for a linear piezoelectric specimen in a four point bending configuration subjected to electrical loading perpendicular to the crack. The focus of these investigations is on a comparison between the commonly used exact crack face boundary condition and the recently proposed energetically consistent boundary conditions. To perform the numerical calculation with a wide range of electrical and mechanical loadings, two efficient finite element formulations are presented for the general analysis of crack problems with non-linear crack face boundary conditions. Methods for the numerical determination of the crack tip energy release rate and the simulation of the experimental method for obtaining the total energy release rate are developed. Numerical results for the crack tip and total energy release rate are given for both the exact and energetically consistent boundary conditions. It is shown that the crack tip energy release rate calculated under energetically consistent boundary conditions is equal to the total energy release rate generated from the simulated experimental method. When the exact boundary conditions are used, there is no such agreement.  相似文献   

13.
The mechanism of pitting caused by rolling contact is analyzed using the fracture mechanics approach. The governing factors are the initial crack length, crack angle, contact force, friction, strain hardened layer, and the hydraulic pressure of trapped fluid acting on the crack surface. Mode I and II stress intensity and the strain energy density factors are calculated by application of the two-dimensional finite element method. The strain energy density criterion is applied to show that shallow angle crack under small rolling contact force and friction enhances the probability of pitting under the roller’s running surface. The presence of a strain hardened surface layer also tends to affect the fracture behavior. The analytical results agree well with the experimental observations.  相似文献   

14.
动态压缩荷载作用下,脆性岩石内部动态细观裂纹扩展特性,对岩石宏观动态力学特性有着重要的影响。然而,对岩石内部动态细观裂纹扩展与宏观动态力学特性的关系研究较少。基于准静态裂纹扩展作用下的应力-应变本构模型、准静态与动态裂纹扩展断裂韧度关系、裂纹速率与应变率关系模型及应变率与动态断裂韧度关系,提出了一种基于细观力学的动态应力-应变本构模型。其中裂纹速率与应变率关系,是根据裂纹长度与应变关系的时间导数推出;应变率与动态断裂韧度关系,是根据推出的裂纹速率及应变率关系,与裂纹速率及断裂韧度关系相结合而得到。研究了应变率对应力-应变本构关系及动态压缩强度影响。并通过试验结果验证了模型的合理性。讨论了岩石初始损伤、围压、模型中参数m、ε0和R对应力-应变关系、动态压缩强度和动态弹性模量的影响。研究结果可为动态压缩荷载作用下深部地下工程脆性围岩稳定性分析提供了一定的理论支持。  相似文献   

15.
程斌  李得睿 《力学学报》2022,54(4):1040-1050
工程材料和结构在反复荷载长期作用下容易发生疲劳开裂, 疲劳裂纹测量对于开展科学试验研究和工程问题分析都至关重要, 但现有方法无法实现高精度的疲劳裂纹全局动态测量. 本文基于数字图像相关(digital image correlation, DIC)技术, 合理利用DIC的退相关效应, 提出一种疲劳裂纹全局动态测量及可视化方法. 该方法首先在相机采集得到的裂纹图像内, 建立具备拓扑关系的目标点云结构, 并运用DIC亚像素算法得到裂纹区域位移场, 再基于零均值归一化互相关(zero-mean normalized cross correlation, ZNCC)计算结果剔除退相关的DIC目标点(灭点). 进一步通过“三生点”算法提取得到裂纹离散边界, 并采用最小二乘法将离散边界拟合为连续裂纹边界, 实现裂纹形态的几何重构, 最终自动计算得到裂纹长度和宽度的动态变化过程. 该方法原理清晰、理论简单, 易于实现. 开展数值模拟和钢节点疲劳试验, 对相关算法和图像采集参数进行了验证, 结果表明本文方法对疲劳裂纹边界的数字化重构误差在0.5个像素内, 基于重构结果计算得到的裂纹长度和宽度误差分别为0.46像素和0.08像素(类同于0.06 mm和0.01 mm), 并成功实现了对疲劳试验裂纹扩展形态的精细化动态测量及可视化. 研究成果证明了DIC技术用于疲劳裂纹全局动态测量及可视化的有效性, 并在测量精度、效率、成本等方面具有显著优势, 可在实验室测量和工程现场测试中推广应用.   相似文献   

16.
Dynamic fracture initiation toughness of marble was tested using two types of the holed-cracked flattened Brazilian disc (HCFBD) specimens, which were diametrically impacted at the flat end of the disc by the split Hopkinson pressure bar (SHPB) of 100 mm diameter. One type of the discs is geometrically similar with different outside diameter of 42 mm, 80 mm, 122 mm and 155 mm respectively, and with crack length being half the diameter; another type of the discs has identical 80 mm diameter and different crack length. Issues associated with determination of the stress wave loading by the SHPB system and the crack initiation time in the disc specimen were resolved using strain gage technique. The stress waves recorded on the bars and the disc failure patterns are shown and explained. The tested dynamic fracture toughness increases obviously with increasing diameter for the geometrically similar HCFBD specimens. It changes moderately for the one-size specimens of identical diameter and different crack length. The size effect of rock dynamic fracture toughness is mainly caused by the fracture process zone length l and fracture incubation time τ, the latter being an additional influencing factor for the dynamic loading as compared with the counterpart static situation. Hence a method is proposed to determine a unique value for the dynamic fracture initiation toughness, the approach takes average of the local distribution and time history for dynamic stress intensity factor in the spatial-temporal domain, which is defined by l and τ jointly. In this way the dynamic size effect is minimized.  相似文献   

17.
金属材料在冲击下的韧脆转变现象和动态断裂韧性的测量是金属材料冲击力学性能研究的重要组成部分.针对金属材料在冲击下的韧脆转变现象认识不足和韧性材料在较低加载率下动态J-R阻力曲线难以测量的现状,提出了采用高速材料试验机,设计专用试验夹具,测量15MnTi钢和11MnNiMo钢在不同加载速率下的韧脆转变过程,以及裂尖约束对...  相似文献   

18.
采用分离式霍普金森压杆(SHPB)系统对页岩进行冲击实验,研究层理角度对页岩动态断裂过程的影响,在裂尖设置裂纹扩展计,借助高速摄影和数字图像相关(DIC)技术对页岩中心切槽半圆盘弯曲(NSCB)试件断裂的全过程进行研究,得到了不同加载角度下页岩的动态起裂韧度、裂纹扩展速度、断裂过程中应变场和水平位移场的变化规律。实验发现:不同加载角度下,页岩的动态起裂韧度具有显著的各向异性,加载角度与动态起裂韧度呈正相关;加载角度对试样的裂纹扩展速度具有显著影响,与裂纹扩展速度呈负相关;当冲击速度较低时,切槽方向是裂纹扩展的优势方向,而当冲击速度较高时,试样会产生沿层理弱面的次生裂纹,次生裂纹对试样的断裂具有显著影响。  相似文献   

19.
The ability of the piezoelectric materials to work as sensors and actuators was employed in a technique for monitoring the degree of crack closure and to detect the crack opening load. The technique is demonstrated through experiments with a cracked beam. It consists in exciting the specimen with a piezoelectric actuator and recording the electromechanical response of piezoelectric sensors placed near the crack mouth, while applying a bending moment to open the crack. The sensors in the neighborhood of the crack present a reduction in the amplitude response signal due to the progressive decrease of the dynamic strains near the crack, as the bending load causes the crack to open, reducing the contact between the surfaces of the fatigue crack and the load transmission through the contact area. The results show that the method has a high sensitivity to the state of crack closure, allowing for the direct determination of the crack opening load.  相似文献   

20.
The traditional compliance-based criterion of the crack stability in fracture mechanics states that the stability of the crack propagation in the different specimens under different fracture modes is determined by the derivative of the energy release rate with respect to the crack length. In this work the compliance-based criterion is verified by experiments performed on fracture mechanical systems. The large number of experiments carried out on different (mode-I, mode-II, mixed-mode I/II and mixed-mode II/III) specimens shows that the stability of the crack propagation depends on the derivative of the critical displacement (the displacement at the point of fracture initiation) with respect to the crack length. The experimentally established limits of crack stability were compared to the limits of the traditional criterion and it is shown that in each case they lead to approximately the same restriction considering the stable zone of crack propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号