首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

2.
ZnO is a well known material; however, the research interest in this material is still high enough because ZnO is one of the materials with the most potential for optoelectronics due to its promising properties of high conductivity as well as good transparency. In this work, aluminum doped zinc oxide films (ZnO:Al) were deposited by RF magnetron sputtering on glass and silicon substrates with different deposition times of 2, 3 and 4 h. The aim of this work is the study of the deposition time effect on the properties of ZnO:Al films. It is shown that films grow with the hexagonal cc-axis perpendicular to the substrate surface. The morphological characteristics show a granular and homogenous surface and the cristallinity of the films is enhanced with increased deposition time. The deposited films show good optical transmittance (80%–90%) in the visible and near infrared spectrum. The calculated band gap is about 3.3 eV. The electrical ZnO:Al/Si(p) junction properties were investigated using the Capacitance–Voltage (C–VCV) dependence. Calculations of the built-in potential from classical 1/C2–V1/C2V characterization give values between 0.54 and 0.71 V.  相似文献   

3.
Highly transparent conductive Al2O3 doped zinc oxide (AZO) thin films have been deposited on the glass substrate by pulsed laser deposition technique. The effects of substrate temperature and post-deposition annealing treatment on structural, electrical and optical properties of AZO thin films were investigated. The experimental results show that the electrical resistivity of films deposited at 240 °C is 6.1 × 10−4 Ω cm, which can be further reduced to as low as 4.7 × 10−4 Ω cm by post-deposition annealing at 400 °C for 2 h in argon. The average transmission of AZO films in the visible range is 90%. The optical direct band gap of films was dependent on the substrate temperature and the annealing treatment in argon. The optical direct band gap value of AZO films increased with increasing annealing temperature.  相似文献   

4.
The Ti-doped ZnO (ZnO:Ti) thin films have been deposited on glass substrates by radio frequency (RF) reactive magnetron sputtering technique with different Ti doping concentrations. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited ZnO:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and fluorescence spectrophotometer. The XRD measurements revealed that all the films had hexagonal wurtzite type structure with a strong (100) preferential orientation and relatively weak (002), (101), and (110) peaks. It was found that the intensity of the (100) diffraction peaks was strongly dependent on the Ti doping concentration. And the full width at half-maximum (FWHM) of (002) diffraction peaks constantly changed at various Ti contents, which decreased first and then increased, reaching a minimum of about 0.378° at 1.43 at.% Ti. The morphologies of ZnO:Ti films with 1.43 at.% Ti showed a denser texture and better smooth surface. All the films were found to be highly transparent in the visible wavelength region with an average transmittance over 90%. Compared with Eg = 3.219 eV for pure ZnO film, all the doping samples exhibited a blue-shift of Eg. It can be attributed to the incorporation of Ti atoms and raising the concentration of carriers. Five emission peaks located at 412, 448, 486, 520, and 550 nm were observed from the photoluminescence spectra measured at room temperature and the origin of these emissions was discussed.  相似文献   

5.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering method under different substrate temperatures. The microstructural, electrical and optical properties of AZO films were investigated in a wide temperature range from room temperature up to 350 °C by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Hall measurement, and UV–visible meter. The nature of AZO films is polycrystalline thin films with hexagonal wurtzite structure and a preferred orientation along c-axis. The crystallinity and surface morphologies of the films are strongly dependent on the growth temperature, which in turn exerts a great effect on microstructural, electrical and optical properties of the AZO films. The atomic arrangement of AZO film having an wurtzite structure was indeed identified by the HRTEM as well as the Selected Area Electron Diffraction (SAED). The defect density of AZO film was investigated by HRTEM. The film deposited at 100 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.6 × 10−4 Ω cm. The average transmission of AZO films in the visible range is all over 85%. More importantly, the low-resistance and high-transmittance AZO film was also prepared at a low temperature of 100 °C.  相似文献   

6.
The combine influence of substrate temperature and bias on microstructure and mechanical properties of CrSiN film was examined. The silicon content and phase constitutions of the films are independent on substrate temperature and bias. The crystal preferred orientation is controlled by substrate bias but unrelated to substrate temperature. The influence of bias (0 V to −300 V) on hardness is more obvious than that of the substrate temperature (100-500 °C).  相似文献   

7.
退火温度对ZnO薄膜结构和发光特性的影响   总被引:16,自引:0,他引:16       下载免费PDF全文
采用反应射频磁控溅射法在 Si(100)基片上制备了高c轴择优取向的ZnO薄膜,研究了退火温度对ZnO薄膜的晶粒尺度、应力状态、成分和发光光谱的影响,探讨了ZnO薄膜的紫外发光光谱和可见发光光谱与薄膜的微观状态之间的关系.研究结果显示,在600—1000℃退火温度范围内,退火对薄膜的织构取向的影响较小,但薄膜的应力状态和成分有比较明显的变化.室温下光致发光光谱分析发现,薄膜的近紫外光谱特征与薄膜的晶粒尺度和缺陷状态之间存在着明显的对应关系;而近紫外光谱随退火温度升高所呈现的整体峰位红移是各激子峰相对比例变 关键词: ZnO薄膜 退火 光致发光 射频反应磁控溅射 可见光发射  相似文献   

8.
Aluminum-doped zinc oxide (AZO) films were deposited at 400 °C by radio-frequency magnetron sputtering using a compound AZO target. The effects of annealing atmospheres as well as hydrogen annealing temperatures on the structural, optical and electrical properties of the AZO films were investigated. It was found that the electrical resistivity varied depending on the atmospheres while annealing in air, nitrogen and hydrogen at 300 °C, respectively. Comparing with that for the un-annealed films, the resistivity of the films annealed in hydrogen decreased from 9.8 × 10−4 Ω cm to 3.5 × 10−4 Ω cm, while that of the films annealed in air and nitrogen increased. The variations in electrical properties are ascribed to both the changes in the concentration of oxygen vacancies and adsorbed oxygen at the grain boundaries. These results were clarified by the comparatively XPS analyzing about the states of oxygen on the surface of the AZO films. There was great increase in electrical resistivity due to the damage of the surfaces, when AZO films were annealed in hydrogen with a temperature higher than 500 °C, but high average optical transmittance of 80-90% in the range of 390-1100 nm were still obtained.  相似文献   

9.
采用直流脉冲反应磁控溅射方法生长W掺杂ZnO(WZO)透明导电氧化物薄膜并研究了衬底温度对薄膜微观结构、组分、表面形貌以及光电性能的影响.实验结果表明,WZO薄膜具有良好的(002)晶面择优取向,且适当的衬底温度是制备优质WZO薄膜的关键因素.随着衬底温度升高,薄膜表面粗糙度先增大后减小;衬底温度较高时,薄膜的结构致密,结晶质量好,电子迁移率高.当衬底温度为325℃时,WZO薄膜获得最低电阻率9.25×10-3Ω·cm,方块电阻为56.24Ω/□,迁移率为11.8 cm2 V-1·s-1,其在可见光及近红外区域(400—1500 nm)范围的平均透过率达到85.7%.  相似文献   

10.
Al-doped ZnO (AZO, ZnO:Al2O3 = 98:2 wt%) films are deposited on different substrates by an RF magnetron sputtering and subsequently annealed at three different conditions to investigate the microstructural, electrical, and optical properties. X-ray diffraction and scanning electron microscope results show that all the samples are polycrystalline and the samples rapid-thermal-annealed at 900 °C in an N2 ambient contain larger grains compared to the furnace-annealed samples. It is shown that the sample deposited at room temperature on the sapphire gives a resistivity of 5.57 × 10−4 Ω cm when furnace-annealed at 500 °C in a mixture of N2:H2 (9:1). It is also shown that the Hall mobility vs. carrier concentration (μ-n) relation is divided into two groups, depending on the annealing conditions, namely, either rapid-thermal annealing or furnace annealing. The relations are described in terms of either grain boundary scattering or ionized impurity scattering mechanism. In addition, the samples produce fairly high transmittance of 91-96.99% across the wavelength region of 400-1100 nm. The optical bandgaps of the samples increase with increasing carrier concentration.  相似文献   

11.
We report the structural and optical properties of high-energy ion-beam irradiated Co-doped magnesium titanate thin films. (Mg0.95Co0.05)TiO3 (MCT) thin films were deposited on quartz substrates using radio frequency magnetron sputtering. Subsequently, the films were annealed for crystallinity and were irradiated with 100?MeV Ag ions by varying the ion fluence. The X-ray diffraction patterns of the films before and after the irradiation were refined using the Rietveld refinement and the variations in the lattice parameters were correlated with the ion fluence. Although, annealing of thin films results in an enhancement in refractive index and optical bandgap, the ion fluence induces significant changes in the refractive index and optical bandgap. Atomic force microscopy is employed to study the surface morphology of the films. The impact of ion fluence on structural and optical properties of MCT thin films has been investigated.  相似文献   

12.
衬底温度对HfO_2薄膜结构和光学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用直流磁控反应溅射法,分别在室温,200,300,400和500℃下制备了HfO2薄膜。利用X射线衍射(XRD)、椭圆偏振光谱(SE)和紫外可见光谱(UVvis)研究了衬底温度对HfO2薄膜的晶体结构和光学性能的影响。XRD研究结果显示:不同衬底温度下制备的HfO2薄膜均为单斜多晶结构;随衬底温度的升高,(-111)面择优生长更加明显,薄膜中晶粒尺寸增大。SE和UVvis研究结果表明:随衬底温度升高,薄膜折射率增加,光学带隙变小;制备的HfO2薄膜在250~850nm范围内有良好的透过性能,透过率在80%以上。  相似文献   

13.
《Current Applied Physics》2020,20(4):557-561
The radio frequency magnetron sputtering technology (RFMS) was employed to deposit perovskite structure orthogonal phase CaZrO3 thin films on Pt/Ti/SiO2/Si substrates. The effects of substrate temperatures on structure and electrical properties of these films were investigated in detail. The CaZrO3 thin films were systematically characterized by means of X-ray diffraction (XRD), Scanning electron microscope (SEM), Multi-frequency LCR meter (HP4294A) and Radiant Precision Workstation to study the phase structure, cross-section morphology, dielectric and ferroelectric properties at different substrate temperatures. The result indicates that these films can withstand 80 V DC Bias voltage and have excellent stability of frequency, voltage and temperature. The CaZrO3 thin film prepared at 550 °C turned out to be mainly orthorhombic CaZrO3 phase with high permittivity, low dielectric loss, extremely low leakage current (at 1 MHz, the dielectric constant is 39.42, the dielectric loss is 0.00455, the quality factor is 220 and the leakage current density is 9.11 × 10−7A/cm2 at 80 V applied voltage.). This work demonstrates that higher substrate temperature can boost the formation of orthorhombic CaZrO3 phase and the CaZrO3 thin film prepared by RF magnetron sputtering is a very promising paraelectric material in the application of thin film capacitor.  相似文献   

14.
In-doped ZnO (ZnO:In) transparent conductive thin films were deposited on glass substrates by RF magnetron sputtering. The effect of substrate temperature on the structural, electrical and optical properties of the ZnO:In thin films was investigated. It was found that higher temperature improves the crystallinity of the films and promotes In substitution easily. ZnO:In thin films with the best crystal quality were fabricated at 300 °C, which exhibit a larger grain size of 29 nm and small tensile strain of 0.9%. The transmittance of all the films was revealed to be over 85% in the visible range independence of the substrate temperatures and the lowest resistivity of ZnO:In thin films is 2.4×10−3 Ω cm.  相似文献   

15.
本研究利用射频磁控溅镀法在玻璃基板上制备3 at.%的Cr掺杂ZnO薄膜,再以300℃~500℃温度退火处理25 mins,并探讨了退火温度对Al掺杂ZnO薄膜的微观结构与机械性能的影响.微观结构分析结果表明Cr掺杂ZnO薄膜的结晶方向为(002),且沿(002)方向的成长随退火温度升高而越加明显,但薄膜的表面却随退火温度升高而变得越来越粗糙.机械性能分析结果揭示晶粒尺寸随退火温度升高而增大,导致差排原子的动能随之降低,致使Cr掺杂ZnO薄膜的硬度随退火温度升高而增大,但对其对杨氏模量却没有太大的影响;此外,Cr掺杂ZnO薄膜的耐磨性与韧性均随退火温度升高而增强,表明退火处理对该薄膜的抗塑性形变能力有很大帮助.  相似文献   

16.
采用直流磁控反应溅射法,分别在室温,200,300,400和500 ℃下制备了HfO2薄膜。利用X射线衍射(XRD)、椭圆偏振光谱(SE)和紫外可见光谱(UV-vis)研究了衬底温度对HfO2薄膜的晶体结构和光学性能的影响。XRD研究结果显示:不同衬底温度下制备的HfO2薄膜均为单斜多晶结构;随衬底温度的升高,(-111)面择优生长更加明显,薄膜中晶粒尺寸增大。SE和UV-vis研究结果表明:随衬底温度升高,薄膜折射率增加,光学带隙变小;制备的HfO2薄膜在250~850 nm范围内有良好的透过性能,透过率在80%以上。  相似文献   

17.
ZnO:Al (AZO) thin films were deposited on glass substrates by RF magnetron sputtering at room temperature and post-annealed in rapid thermal annealing (RTA) system. The effect of post-annealing temperature on the structural, optical, and electrical properties was investigated. As the post-annealing temperature increased, electrical conductivity is deteriorated due to a decrease in the mobility or carrier concentration, gradually. According to X-ray photoelectron spectroscopy (XPS) analysis, the behavior of mobility and carrier concentration is attributed to increase the O2 absorption on film surface, which act as rising the barrier potential at the low post-annealing temperature (200 °C) and reducing the density of donor-like defects at the high post-annealing temperature (400 °C). In case of post-annealing, the minimization of O2 absorption is a very important factor to obtain better electrical properties.  相似文献   

18.
ZnO退火条件对硫化法制备的ZnS薄膜特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
王宝义  张仁刚  张辉  万冬云  魏龙 《物理学报》2005,54(4):1874-1878
采用反应磁控溅射法在玻璃和石英衬底上沉积了ZnO薄膜, 然后经过不同条件退火和在H22S气氛中硫化最终得到ZnS薄膜. 用x射线粉末衍射仪、扫描电子显微镜和UV—VIS分光光度计 对ZnS薄膜样品进行了分析. 结果表明, ZnO薄膜硫化后的晶体结构和光学性质取决于它的退 火条件. 真空和纯O22中退火的ZnO薄膜硫化后只是部分形成六角晶系结构的ZnS . 而在空气 和纯N22中退火的ZnO薄膜则全部转变为ZnS, 在可见光范围内的光透过率 关键词: ZnS薄膜 磁控溅射 ZnO硫化 太阳电池  相似文献   

19.
Zinc oxide thin films were deposited by radio frequency magnetron sputtering at room temperature using a metallic zinc target in a gas mixture of argon and oxygen. Plasma power, oxygen /argon gas ratio, gas pressure, and substrate temperature were varied, and an experimental design method was used to optimize these deposition parameters by considering their interdependence. Crystalline structures and film stresses were examined. Post-deposition rapid thermal annealing was also carried out to observe its effects on the film properties. Statistical analysis was then used to find the optimal sputtering conditions. Results indicated that plasma power and gas pressure have the largest effects on film crystallization and stress and that postdeposition annealing can be used to improve the quality of the film properties.  相似文献   

20.
采用射频磁控溅射法,在玻璃基片上制备了ZnO:Al(AZO)透明导电薄膜。用X射线衍射(XRD)仪、紫外-可见分光光度计、方块电阻测试仪和台阶仪对不同溅射功率下Al掺杂ZnO薄膜的结晶、光学、电学性能、沉积速率以及热稳定性进行了研究。研究结果表明:不同溅射功率下沉积的AZO薄膜具有六角纤锌矿结构,均呈c轴择优取向;(002)衍射峰强和薄膜的结晶度随溅射功率的提高逐渐增强;随溅射功率的提高,AZO薄膜的透射率有所下降,但在可见光(380~780nm)范围内平均透射率仍80%;薄膜的方块电阻随溅射功率的增加逐渐减小;功率为160~200W时,薄膜的热稳定性最好,升温前后方块电阻变化率为13%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号