首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Efficient design of optoelectronic devices based on electron intersubband transitions depends critically on the knowledge of the intersubband relaxation times which in turn, depends on electron scattering with LO and acoustic phonons. In this article the intersubband scattering time associated with electron–acoustic-phonon interaction has been discussed in terms of phonon mode quantization and phonon confinement with describing the acoustic phonon dispersion relation in detail by introducing the cut-off frequency for each mode. It has been shown that the quantization of acoustic phonon modes lead to an enhancement in electron–phonon scattering time in AlGaAs quantum well structures. Based on the presented model, a new tailoring method has presented to adjust the electron–phonon scattering time in intersubband-transition-based structures while keeping the electronic properties unaltered. Also, we illustrated that for a quantum well with subband energy separation of ∼30 meV, the intersubband scattering time with acoustic-phonon-assisted transitions could be tailored from ∼120 ps to increased value of ∼400 ps or reduced value of ∼45 ps by inserting a 1 nm-thickacoustically soft or hard layers, respectively, while keeping the same the initial energy separation.  相似文献   

3.
We study the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in doped armchair graphene nanoribbon. The effects of both external magnetic field and electron-Holstein phonon on RKKY interaction have been addressed. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic field along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain both transverse and longitudinal static spin susceptibilities of armchair graphene nanoribbon in the presence of electron-phonon coupling and magnetic field. The spin susceptibility components are calculated using the spin dependent Green’s function approach for Holstein model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show the influences of magnetic field on the spatial behavior of in-plane and longitudinal RKKY interactions are different in the presence of magnetic field.  相似文献   

4.
Temperature-dependent Raman investigations of titanium in the α and pressure-quenched ω-phase have been carried out. The results obtained suggest the possible coexistence of both phases at ambient pressure and low temperatures. Comparison of the low-temperature E2g phonon self-energies in both phases with simulations based on the calculated electronic structures for α- and ω-Ti implies significant contributions from non-adiabatic electron–phonon interactions.  相似文献   

5.
Optical vibrations of the lattice and the electron-phonon interaction in polar ternary mixed crystals are studied in the framework of the continuum model of Born and Huang and the random-element-isodisplacement model. A normal-coordinate system to describe the optical vibration in ternary mixed crystals is correctly adopted to derive a new Fr?hlich-like Hamiltonian for the electron-phonon interaction including the unit-cell volume variation influence. The numerical results for the phonon modes, the electron-phonon coupling constants and the polaronic energies for several typical materials are obtained. It is verified that the nonlinearity of the electron-phonon coupling effects with the composition is essential and the unit-cell volume effects cannot be neglected for most ternary mixed crystals.  相似文献   

6.
7.
We study the electronic transport in the presence of electron–phonon interaction (EPI) for a molecular electronic device. Instead of mean field approximation (MFA), the related phonon correlation function is conducted with the Langreth theorem (LT). We present formal expressions for the bandwidth of the electron’s spectral function in the central region of the devices, such as quantum dot (QD), or single molecular transistor (SMT). Our results show that the out-tunneling rate depends on the energy, bias voltage and the phonon field. Besides, the predicted conductance map, behaving as a function of bias voltage and the gate voltage, gets blurred at the high bias voltage region. These EPI effects are consistent with the experimental observations in the EPI transport experiment.  相似文献   

8.
9.
We study numerically the effects of an extrinsic spin–orbit interaction on the model of electrons in n-doped semiconductors of Matsubara and Toyozawa (MT). We focus on the analysis of the density of states (DOS) and the inverse participation ratio (IPR) of the spin–orbit perturbed states in the MT set of energy eigenstates in order to characterize the eigenstates with respect to their extended or localized nature. The finite sizes that we are able to consider necessitate an enhancement of the spin–orbit coupling strength in order to obtain a meaningful perturbation. The IPR and DOS are then studied as a function of the enhancement parameter.  相似文献   

10.
We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron–electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.  相似文献   

11.
We have investigated the influence of electron–phonon (e–p) interaction and hydrogenic donor impurity simultaneously on energy difference, binding energy, the linear, nonlinear and total refractive index changes and absorption coefficients of a hexagonal-shaped quantum wire. For this goal, we have used finite-element method (FEM), a compact density matrix approach and an iterative procedure. It is deduced that energy difference and binding energy decrease by changing the impurity position with and without e–p interaction. The dipole matrix elements have complex behaviours in the presence of impurity with and without e–p interaction. The refractive index changes and absorption coefficients increase and shift towards lower energies by enhancing a 1 with central impurity. In the presence of central impurity, the absorption coefficients and refractive index changes enhance and shift toward higher energies when e–p interaction is considered.  相似文献   

12.
We investigate the electron–phonon interaction in a polar–polar single heterostructure through the use of the linear combination of hybrid phonon modes, considering the role of longitudinal optical, transverse optical and interface modes, using a continuum model that accounts for both mechanical and electrical continuity over a heterostructure interface. We discuss the use of other models for such systems, such as the bulk phonon (3DP) and dielectric continuum (DC) models, using previously developed sum-rules to explain the limitations on their validity. We find that our linear combination (LC) model gives an excellent agreement with scattering rates previously derived using the 3DP and DC models when the lattice dispersion is weak enough to be ignored, however, when there is a noticeable lattice dispersion, the LC model returns a different answer, suggesting that interface modes play a much greater part in the scattering characteristics of the system under certain conditions. We also discuss the remote phonon effect in polar/polar heterostructures.  相似文献   

13.
The formation of radiation defects in Si under 1–10-MeV proton bombardment is analyzed. Numerical simulation is carried out, and histograms of the distribution of the energy transferred to recoil atoms are obtained. Two energy ranges are considered when analyzing the histograms. Single Frenkel pairs with closely located components are produced in the first range (small energies). Recoil atoms of the second range have an energy sufficient for the production of a displacement cascade. As a result, nanoscale regions with high densities of vacancies and different types of their complexes appear. In addition, as the energy of the primary knocked-out atoms increases, the average distance between genetically related Frenkel pairs increases, and, as a consequence, the fraction of pairs that are not recombined under bombardment increases.  相似文献   

14.
We have calculated the structural and electronic properties of SrPtAs in a hexagonal KZnAs-type of crystal structure using a generalized gradient approximation of the density functional theory and the ab initio planewave pseudopotential method. These results are used to further calculate the phonon dispersions curves and the phonon density of states using a linear response approach based on the density functional theory. Using the electronic and phonon results, the electron–phonon coupling is computed to be of the intermediate strength of 0.78. In large part, this is contributed by the phonon modes dominated by the vibrations of Pt and As atoms. The superconducting critical temperature is estimated to be 1.9 K, in good accord with its experimental value of 2.4 K.  相似文献   

15.
ZnO nanocombs with different sizes are synthesized by simple thermal evaporation methods. Scanning electron microscopy and transmission election microscopy testify the growth of single crystal ZnO nanocombs along [0 0 0 2] direction. The temperature-dependent Raman spectra show that the intensity of surface optical (SO) modes in ZnO nanocombs obviously increases with declining measure temperatures. With the decrease of diameters, the frequency of SO modes shows a blue shift due to the passivation of surface states. The resonant Raman scattering shows that the strength of electron–phonon coupling increases with decreasing size. Calculated on size-dependent electron–phonon interaction energy agrees well with measured values for a large size range. The origin of electron–phonon coupling in ZnO nanocombs is also discussed.  相似文献   

16.
17.
Electronic Raman scattering in YB6 and in its structural and electronic analog LaB6 has been studied in the temperature range of 10–730 K. The experimental spectra have been compared to those calculated on the basis of ab initio band structures with renormalization owing to the electron–phonon interaction. Good agreement between the calculation and experiment for LaB6 has been obtained throughout the entire temperature range. This allows the determination of the coupling constant λ ep = 0.25. To satisfactorily describe the spectra of electronic light scattering in YB6, it is necessary to introduce an additional electron relaxation channel. In this case, the estimate of the electron–phonon coupling constant λ ep is no more than 0.4; for this reason, a high superconducting transition temperature cannot be explained only by the phonon mechanism.  相似文献   

18.
《Physics letters. A》1999,259(6):466-475
The effects of squeezing-antisqueezing resulting from the motion and density fluctuation of the electrons on the properties of both electrons and phonons have been studied by using a new variational ansatz with correlated displacement and squeezing in strongly coupled electron–phonon systems. The effects results in (1) reduction of the ground state energy, and enhancement of stability of the systems, (2) increase of the binding energy of the polaron occurred and weakening of growing speed of polaron narrowing of electron band, (3) increase of the charge density wave order and (4) suppression of increased tendency of anomalous quantum fluctuation of the phonons in the systems. The antisqueezed effect plays an important role in determining the properties of the electrons and phonons in the strongly coupled electron–phonon systems.  相似文献   

19.
Electronic transport through a vibrating double quantum dot (DQD) in contact with noncollinear ferromagnetic (FM) leads is investigated. The state transition between the two dots of the DQD is excited by an AC microwave driving field. The corresponding currents and differential conductance are calculated in the Coulomb blockade regime by means of the Born-Markov master equation. It is shown that the interplay between electrons and phonons gives rise to phonon-assisted tunneling resonances and Franck-Condon blockade under certain conditions. In noncollinear magnetic configurations, spin-blockade effects are also observed, and the angle of polarization has some influence on the transport characteristics.  相似文献   

20.
The form factors of the electron–phonon interaction for GaAs/Ga1−xAlxAs single heterostructures have been evaluated using a finite height barrier. The calculations are performed within the extreme quantum limit approximation, assuming for the envelope electronic wavefunction a modified Fang–Howard wavefunction. Both types of long-wave phonons, longitudinal optical and interface phonons, are considered. It is found that the effect of the finite height is to reduce the strength of the electron–phonon interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号