首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Pressure induced binding energy of a hydrogenic impurity in an InAs/GaAs quantum wire is investigated. Calculations are performed using Bessel functions as an orthonormal basis within a single band effective mass approximation using variational method. Photoionization cross-section of the hydrogenic impurity in the influence of pressure is studied. The total optical absorption and the refractive index changes as a function of normalized photon energy between the ground and the first excited state in the presence of pressure are analyzed. The optical absorption coefficients and the refractive index changes strongly depend on the incident optical intensity and pressure. The occurred blue shift of the resonant peak due to the pressure gives the information about the variation of two energy levels in the quantum well wire. The optical absorption coefficients and the refractive index changes are strongly dependent on the incident optical intensity and the pressure.  相似文献   

2.
The combined effects of hydrostatic pressure, presence and absence of hydrogenic donor impurity are investigated on the linear and nonlinear optical absorption coefficients and refractive index changes of a GaAs/Ga1−xAlxAs nanowire superlattice. The wave functions and corresponding eigenvalues are calculated using finite difference method in the framework of effective mass approximation. Analytical expressions for the linear and third order nonlinear optical absorption coefficients and refractive index changes are obtained by means of compact-density matrix formalism. The linear and third order nonlinear absorption coefficient and refractive index changes are presented as a function of photon energy for different values of hydrostatic pressure, incident photon intensity and relaxation time in the presence and absence of hydrogenic donor impurity. It is found that the linear and third order nonlinear absorption coefficients, refractive index changes and resonance energy are quite sensitive to the presence of impurity and applied hydrostatic pressure. Moreover, the saturation in optical spectrum and relaxation time can be adjusted by increasing pressure in presence of impurity whereas the effect of hydrostatic pressure is negligible in the case of absence of hydrogenic impurity.  相似文献   

3.
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/Al x Ga 1 x As spherical quantum dot are theoretically investigated,using the Luttinger-Kohn effective mass equation.So,electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach,respectively.Finally,effects of an impurity,band edge non-parabolicity,incident light intensity and the dot size on the linear,the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated.Our results indicate that,the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered.Moreover,incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.  相似文献   

4.
Optical absorption coefficients and refractive index changes associated with intersubband transition of an off-center hydrogenic impurity in a spherical quantum dot (QD) with Gaussian confinement potential are theoretically investigated. Our results show that the optical absorption coefficients in a spherical QD are 2–3 orders of magnitude higher than those in quantum wells and are 2–3 orders smaller than those in a disk-like QD. It is found that the optical absorptions and the optical refractive index are strongly affected not only by the confinement barrier height, dot radius but also by the position of the impurity.  相似文献   

5.
We have investigated the influence of electron–phonon (e–p) interaction and hydrogenic donor impurity simultaneously on energy difference, binding energy, the linear, nonlinear and total refractive index changes and absorption coefficients of a hexagonal-shaped quantum wire. For this goal, we have used finite-element method (FEM), a compact density matrix approach and an iterative procedure. It is deduced that energy difference and binding energy decrease by changing the impurity position with and without e–p interaction. The dipole matrix elements have complex behaviours in the presence of impurity with and without e–p interaction. The refractive index changes and absorption coefficients increase and shift towards lower energies by enhancing a 1 with central impurity. In the presence of central impurity, the absorption coefficients and refractive index changes enhance and shift toward higher energies when e–p interaction is considered.  相似文献   

6.
7.
A system of an electron with a hydrogenic impurity confined in anisotropic quantum dots with ellipsoidal shape has been investigated. The linear and nonlinear optical absorptions as well as refractive index changes associated with intersubband transitions has been calculated. The results are presented as a function of the incident photon energy. The results show that the optical properties of a donor in ellipsoidal quantum dots are strongly affected by the anisotropy degree and the dot size. The dot anisotropy is shown to play a fundamental role in determining the dot properties.  相似文献   

8.
M. Cristea  C. R. Truşcă 《哲学杂志》2013,93(35):3343-3360
Abstract

The effects of the hydrogenic impurity on the electron-related non-linear optical processes in a InAs/GaAs dome-shaped quantum dot with a wetting layer under applied electric fields are studied within the density-matrix formalism. The one-electron energy levels and wave functions are calculated using the effective mass approximation and the finite element method. The non-linear optical absorption, relative refractive index change and non-linear optical rectification associated with interlevel transitions are calculated under a strong probe field excitation for both in-plane and z-polarisation of the incident light. According to our results as the electric field increases the absorption and dispersion peaks decrease and exhibit red shift. Hydrogenic impurity located at the origin induces a blue shift in the optical responses. For the optical absorption coefficient the peaks magnitude is enhanced by the impurity presence independent of the electric field strengths, whereas the non-linear optical rectification is larger in the case with impurity only for zero applied electric field.  相似文献   

9.
An investigation of the laser radiation effects of a hydrogenic impurity in a quantum dot has been performed by using the matrix diagonalization method. We find that the laser field amplitude has an important influence on the linear, third-order nonlinear, and total absorption coefficients as well as the refractive index changes.  相似文献   

10.
In this work we study the electronic states in quantum dot–ring complex nanostructures with an on-center hydrogenic impurity. The influence of the impurity on Aharonov–Bohm energy spectra oscillations and intraband optical absorption is investigated. It is shown that in the presence of a hydrogenic donor impurity the Aharonov–Bohm oscillations in quantum dot–ring structures become highly tunable. Furthermore, the presence of the impurity drastically changes the intraband absorption spectra due to the strong controllability of the electron localization type.  相似文献   

11.
The linear and nonlinear optical properties of cylinder GaN/AlN quantum dots with strain effects and impurity are investigated by taking into account the effects of the deformation potential and piezoelectric potential on the conduction band edge. The results are presented as a function of photon energies and QD radii. The optical absorption spectrum and refractive index changes have a blueshift in the presence of the impurity. With increasing distance of the impurity’s position along the growth direction, the peak values of the refractive index changes decrease and shift to higher photon energy. When the sizes of the QDs increase, redshift effects are observed and the relative amplitudes diminish. It can be found that the nonlinear effect becomes obvious with increase of the incident optical intensity. Then there is a “hole-burning” in the absorption coefficient spectra and two new peaks will appear in the total refractive index change spectrum when the optical intensity becomes larger enough. Finally it can be concluded that the intensity of the incident light and the position of the impurity play an important role in the linear and nonlinear optical properties.  相似文献   

12.
In this paper, the effect of hydrostatic pressure on both the intersubband optical absorption coefficients and the refractive index changes is studied for typical GaAs/Al x  Ga1?x As cubic quantum dot. We use analytical expressions for the linear and third-order nonlinear intersubband absorption coefficients and refractive index changes obtained by the compact-density matrix formalism. The linear, third-order nonlinear, and total intersubband absorption coefficients and refractive index changes are calculated at different pressures as a function of the photon energy with known values of box length (L), the incident optical intensity (I), and Al concentration (x). According to the results obtained from the present work, we have found that the pressure plays an important role in the intersubband optical absorption coefficient and refractive index changes in a cubic quantum dot.  相似文献   

13.
Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.  相似文献   

14.
In this study, we have calculated the linear, nonlinear and total refractive index changes and absorption coefficients for the transitions 1s–1p, 1p–1d and 1d–1f in a spherical quantum dot with parabolic potential. Quantum Genetic Algorithm (QGA) and Hartree–Fock–Roothaan (HFR) method have been employed to calculate the wavefuctions and energy eigenvalues. The results show that impurity, dot radius, stoichiometric ratio, incident optical intensity and carrier density of the system have important effects on the optical refractive index changes and absorption coefficients. Also, we find that as the transitions between orbitals with big l value move to lower energy region in case with parabolic potential, in case without parabolic potential these transitions move to higher energy region.  相似文献   

15.
The optical absorption and refractive index of a donor impurity confined by a three-dimensional quantum pseudodot are studied using the matrix diagonalization method within the effective-mass approximation. The great advantage of our methodology is that it enables us to tune confinement strength and regime by varying two parameters in the model potential. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index changes have been examined. The results are presented as a function of the incident photon energy for the different values of the chemical potential of the electron gas and the zero point of the pseudoharmonic potential. We find that the larger optical nonlinearity will be obtained by varying the zero point of the pseudoharmonic potential compared to the chemical potential of electron gas.  相似文献   

16.
Magnetic field induced exciton binding energy is investigated in a strained InAs/GaAs quantum wire within the framework of single band effective mass approximation. The strain contribution to the potential is determined through deformation potentials. The interband emission energy of strained InAs/GaAs wire is investigated in the influence of magnetic field with the various structural parameters. Magnetic field induced photoionization cross section of the exciton is studied. The total optical absorption and the refractive index changes as a function of normalized photon energy between the ground and the first excited state in the presence of magnetic field are analyzed. The optical absorption coefficients and the refractive index changes strongly depend on the incident optical intensity and the magnetic field. The occurred blueshift of the resonant peak due to the magnetic field will give the information about the variation of two energy levels in the quantum well wire. The optical absorption coefficients and the refractive index changes are strongly dependent on the incident optical intensity and the magnetic field.  相似文献   

17.
ABSTRACT

Using the two-dimensional (2D) diagonalisation method, the impurity-related electronic states and optical response in a 2D quantum dot with Gaussian confinement potential under nonresonant intense laser field are investigated. The effects of a hydrogenic impurity on the energy spectrum and binding energy of the electron and also intersubband optical absorption are calculated. The obtained numerical results show that the degeneracies of the excited electron states are broken and the absorption spectrum exhibits a redshift with the values of the laser field. The findings indicate a new degree of freedom to tune the performance of novel optoelectronic devices, based on the quantum dots and to control their specific properties by means of intense laser field and hydrogenic donor impurity. Using the same Gaussian confinement model, the electronic properties of a confined electron in the region of a spherical quantum dot are studied under the combined effects of on-centre donor impurity and a linearly polarised intense laser radiation. The three-dimensional problem is used to theoretically model, with very good agreement, some experimental findings reported in the literature related to the photoluminescence peak energy transition.  相似文献   

18.
The effect of longitudinal optical phonon field on the ground state and low lying-excited state energies of a hydrogenic impurity in a Zn1−xCdxSe/ZnSe strained quantum dot is investigated for various Cd content using the Aldrich-Bajaj effective potential. We consider the strain effect considering the internal electric field induced by the spontaneous and piezoelectric polarizations. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height. Polaron induced photoionization cross section of the hydrogenic impurity in the quantum dot is investigated. We study the oscillator strengths, the linear and third-order nonlinear optical absorption coefficients as a function of incident photon energy for 1s-1p and 1p-1d transitions with and without the polaronic effect. It is observed that the potential taking into account the effects of phonon makes the binding energies more than the obtained results using a Coulomb potential screened by a static dielectric constant and the optical properties of hydrogenic impurity in a quantum dot are strongly affected by the confining potential and the radii. It is also observed that the magnitude of the absorption coefficients increases for the transitions between higher levels with the inclusion of phonon effect.  相似文献   

19.
An investigation of the nonlinear optical rectification of a hydrogenic impurity, which is in a two-dimensional disc-like quantum dot (QD) with parabolic confinement potential, has been performed by using the perturbation method in the effective mass approximation. Both the electric field and the confinement effects on the energy are investigated in detail. The results are presented as a function of the incident photon energy for the different values of the confinement strength and the electric field. It is found that the nonlinear optical properties of hydrogenic impurity states in a disc-like QD are strongly affected by the confinement strength and the electric field.  相似文献   

20.
The nonlinear optical properties of an off-center hydrogenic donor in a two-dimensional quantum dot under applied magnetic field are investigated in detail by using the matrix diagonalization method. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index changes have been examined between the ground state (L=0) and the first excited state (L=1). The results show that the ion position, the applied magnetic field, the confinement frequency, and the incident optical intensity have an important influence on the nonlinear optical properties of off-center donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号