共查询到20条相似文献,搜索用时 0 毫秒
1.
《Physics letters. A》2014,378(28-29):1945-1951
B-doping induced spin polarization in zigzag-edged graphene nanoribbons is studied by density functional calculations by two kinds of doping: (1) doping only one B atom in the central scattering region; (2) periodically doping in the whole system. It is found that even a single B dopant may cause large spin polarization in the current, which can be understood by the breaking of spin-degeneracy due to the impurity atoms and the Fermi level shift resulting from the hole-donating of the B atoms. More interestingly, 100% spin polarized current under finite bias is obtained through periodical doping although the transmission function around the Fermi level is not 100% spin polarized. This can be interpreted by a rigid shift model of the special band structures of the left and right leads in this case. It demonstrates that only transmission function at equilibrium conditions is not sufficient in the study of electron transport, but current should be considered in certain situations. 相似文献
2.
Structural, electronic, and magnetic properties of pristine and oxygen-adsorbed graphene nanoribbons
The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond. 相似文献
3.
Since nucleobase-functionalized carbon nanotubes (CNTs) are important in the biological applications; the junction of a pair of CNTs through a bridging cytosine linkage is investigated based on density functional theory (DFT) calculations. In the exact model of study, the CNTs are bound to N1 and C5 atomic sites of cytosine to make possible the CNT–cytosine–CNT model. To systematically investigate the purpose, the models of original CNT, original cytosine, and primary models of cytosine–CNT in which one CNT is only bound to N1 or C5 atomic site of cytosine are also considered. The results of dipole moments and binding energies indicated that the CNT–cytosine–CNT model is the most stable one among all three possible models cytosine-functionalized CNT. The values of energy gaps indicated that the conducting properties of primary cytosine–CNT models are not changed referring to the original CNT but better conductivity could be observed for the CNT–cytosine–CNT model. The values of evaluated quadrupole coupling constants indicated that the electronic densities of nitrogen and oxygen atoms of cytosine detect notable affects during the functionalization processes by the zigzag CNTs and the oxygen atom of CNT–cytosine–CNT model could be proposed as the most proper interacting site of cytosine among other functionalized zigzag models and also the original cytosine. However, the changes of quadrupole coupling constants for the atoms of cytosine are almost negligible during the functionalization processes by the armchair CNTs. 相似文献
4.
5.
We have performed ab initio density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–V characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics. 相似文献
6.
The reaction between molecular oxygen and an isolated zigzag graphene edge has been studied using density functional theory at the B3LYP/6-31G(d) level of theory. The initial reaction forms a peroxide, ΔH = −135 kJ mol−1. If the graphene edge is pre-oxidised, the dangling peroxy atom can (Ea = 91 kJ mol−1) migrate across contiguous ketone groups until finding another vacant site and stabilizing as a ketone. However, if no further vacant sites are available, the peroxy oxygen has a number of other possibilities open to it, including desorption of an oxygen atom (Ea = 140 kJ mol−1), migration via the basal plane to form a lactone (Ea = 147 kJ mol−1), and direct interaction with an adjacent oxide to form the lactone or a carbonate (Ea = 146 kJ mol−1). The combination of thermal energy and the heat released in the initial formation of the peroxy adduct is likely to be sufficient to overcome these secondary barriers at modest temperatures.Transfer of the dangling peroxy O to the basal plane produces an epoxide that is mobile on the basal surface (Ea = 40–80 kJ mol−1) but that is transferred back to the edge upon coming into proximity of either a vacant edge site or ketone. The instability of the edge epoxide structure implies that it cannot play a significant role in carbon gasification through promoting the reactivity of ketones, contrary to earlier suggestions.The desorption of an oxygen atom creates a very active species capable of reacting with basal or edge sites as well as with oxygen complexes. The reaction of ketone + O has been reported to yield a five-membered ring + CO2, leading to an overall stoichiometry which is consistent with the observed oxyreactivity of carbon surface oxides identified in isotopic labelling studies in which one O atom is gasified and the other forms a new surface oxide. 相似文献
7.
《Current Applied Physics》2014,14(3):337-339
We have investigated the electric field effect on horseshoe-shape carbon nanotubes (CNTs) resulting from hydrogen adsorption on the single-wall armchair (n,n)CNTs with 6 ≤ n ≤ 16 by using the density functional theory calculations. The horseshoe-shape CNT is completely unzipped into a graphene nanoribbon upon applying a critical electric field, which decreases with increasing CNT diameter, thus enabling one to select a nanoribbon width. A simple model based on the tensile force exerted on the tube walls by the applied electric field was introduced to understand the CNT-diameter dependence of the critical field. 相似文献
8.
Recently a large interest has arisen for using less active reducers of graphene oxide, GO, that are friendly with the environment. In the present work, a DFT theoretical study on the reduction process of GO model surfaces is performed taking into account zwitterionic dopamine, ZDA, as reducing agent. Several periodic models representing epoxy and hydroxyl patches on GO basal plane are proposed. As the number of oxide groups in a patch of epoxies or hydroxyls on the surface of graphene increases from 1 to 5, these systems become more stable. Whereas the adsorption of ZDA on patches of GO with 5 epoxy groups is non-dissociative, that of ZDA on patches of GO with 5 hydroxyl groups is fundamentally dissociative, reducing the surface of graphene oxide. The H2O molecule produced in the GO reduction becomes trapped to ZDA through a hydrogen bond. The ZDA binding to GO was analysed by considering electrostatic effects and attractive non-covalent contributions due to vdW interactions. 相似文献
9.
The properties of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) nanocones were investigated by density functional theory (DFT) calculations. The investigated structures were optimized and chemical shielding (CS) properties including isotropic and anisotropic CS parameters were calculated for the atoms of the optimized structures. The magnitudes of CS parameters were observed to be mainly dependent on the bond lengths of considered atoms. The results indicated that the atoms could be divided into atomic layers due to the similarities of their CS properties for the atoms of each layer. The trend means that the atoms of each layer detect almost similar electronic environments. Moreover, the atoms at the apex and mouth of nanocones exhibit different properties with respect to the other atomic layers. 相似文献
10.
The atomic and electronic structures of graphane (hydrogen-passivated graphene) are theoretically investigated using the local density approximation (LDA) of the density functional theory (DFT) and the pseudopotential method. Our total energy calculations suggest that the chairlike configuration for graphane is more energetically stable than the boatlike and tablelike configurations by approximately 0.129 eV/cell and 0.655 eV/cell, respectively. Our calculations suggest that the LDA band gap of the chairlike structure is approximately 3.9 eV. The equilibrium geometry and the band structure of the chairlike conformer are investigated and compared with the available experimental and theoretical data. We further present total and partial charge density to reveal the orbital nature of the highest occupied and the lowest unoccupied states. 相似文献
11.
《Current Applied Physics》2015,15(6):691-697
Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. 相似文献
12.
13.
Structural and optical properties of graphene with a vacancy and B, N, O and F doped graphene have been investigated computationally using density functional theory (DFT). We find that B is a p-type while N, O and F doped graphene layers, as well as graphene with a vacancy are n-type semiconductors. Optical properties for both cases of in plane and out of plane polarization of light are investigated. It is observed that with the increase in the number of electrons entering the supercell, the amount of absorption of the system decreases and the absorption peaks are transferred to higher energies (blue shift). 相似文献
14.
In the framework of density functional theory (DFT), we calculated the electronic structures and the quadrupole coupling constants (CQ) in the pristine and carbon doped (C-doped) beryllium oxide nanotubes (BeONTs) for the first time. The pristine and C-doped forms of representative (10, 0) zigzag and (5, 5) armchair models of BeONTs were considered in this study. The structures are allowed to relax by performing all atomic optimization. Formation energies indicate that C-doping of Be atom (CBe form) could be more favorable than C-doping of O atom (CO form) in both zigzag and armchair BeONTs. Gap energies and dipole moments detected the effects of dopant in the (5, 5) armchair models; however, those parameters did not detect any significant changes in the C-doped (10, 0) zigzag BeONT models. The calculated nuclear quadrupole coupling constant for the Be and O nuclei reveal that the pristine models can be divided into layers of nuclei with an equivalent electrostatic environment such that those nuclei at the ends of tubes end up in a strong electrostatic environment when compared to the other nuclei along the length of tubes. Comparison with the available data on the pristine BeONTs reveals the influence of C-doping on the CQ parameters of Be and O atoms in the C-doped structures. For most lattice sites, the degree of influence on the CQ parameters of the zigzag model is larger than that of the armchair model. The calculations were performed based on the B3LYP DFT method and 6-31G∗ standard basis sets using the Gaussian 09 program package. 相似文献
15.
Hybridized Z-BexSyCz systems connected by zigzag beryllium-sulfide (BeS) and graphene nanoribbons are theoretically designed, and their electronic transport characteristics are explored by first-principles approach. For the hybridized systems with unequal number of x and y, i.e. z is an odd number, an exceptional negative differential resistance (NDR) property occurs. However, for the hybridized systems including an even number of zigzag carbon chains, namely x equal to y, an interesting current-limited behavior happens. Meanwhile, the NDR phenomenon disappears. The spin transport properties of these hybridized Z-BexSyCz systems with parallel magnetism configuration also reveal the above odd–even dependence conductance behavior. 相似文献
16.
Sahar Javaheri Manuchehr Babaeipour Arash Boochani Sirvan Naderi 《Chinese Journal of Physics (Taipei)》2018,56(6):2698-2709
Electronic and optical properties of pure and V-doped AlN nanosheet have been investigated using density functional theory, and the dielectric tensor is calculated using the random phase approximation (RPA). The results of structural calculations show that the V atoms tend to replace instead of aluminum atoms with the lowest formation energy. In addition, study of the electronic properties shows that pure AlN nanosheet is a p-type semiconductor that by increasing one V atom, it possesses the metallic properties and magnetic moment becomes Zero. Moreover, by replacing two V atoms, the half-metallic behavior with 100% spin polarization can be found, and each supercell gains a net magnetic moment of 3.99 µB. Optical properties like the dielectric function, the energy loss function, the absorption coefficients, the refractive index are calculated for both parallel and perpendicular electric field polarizations, and the results show that the optical spectra are anisotropic. 相似文献
17.
The structural and electronic properties of semiconductors (Si and Ge) and metal (Au and Tl) atoms doped armchair (n, n) and zigzag (n, 0); n=4–6, single wall carbon nanotubes (SWCNTs) have been studied using an ab-initio method. We have considered a linear chain of dopant atoms inside CNTs of different diameters but of same length. We have studied variation of B.E./atom, ionization potential, electron affinity and HOMO–LUMO gap of doped armchair and zigzag CNTs with diameter and dopant type. For armchair undoped CNTs, the B.E./atom increases with the increase in diameter of the tubes. For Si, Ge and Tl doped CNTs, B.E./atom is maximum for (6, 6) CNT whereas for Au doped CNTs, it is maximum for (5, 5) CNTs. For pure CNTs, IP decreases slightly with increasing diameter whereas EA increases with diameter. The study of HOMO–LUMO gap shows that on doping metallic character of the armchair CNTs increases whereas for zigzag CNTs semiconducting character increases. In case of zigzag tubes only Si doped (5, 0), (6, 0) and Ge doped (6, 0) CNTs are stable. The IP and EA for doped zigzag CNTs remain almost independent of tube diameter and dopant type whereas for doped armchair CNTs, maximum IP and EA are observed for (5, 5) tube for all dopants. 相似文献
18.
J. M. Míguez P. Gómez-Álvarez M. M. Piñeiro B. Mendiboure 《Molecular physics》2018,116(21-22):3417-3424
ABSTRACTConfinement of fluids in porous media leads to the presence of solid–fluid (SF) interfaces that play a key role in many different fields. The experimental characterisation of SF interfacial properties, in particular the surface tension, is challenging or not accessible. In this work, we apply mean-field density functional theory (DFT) to determine the surface tension and also density profile of a Lennard-Jones fluid in slit-shaped pores for realistic amounts of adsorbed molecules. We consider the pore walls to interact with fluid molecules through the well-known 10-4-3 Steele potential. The results are compared with those obtained from Monte Carlo simulations in the Grand Canonical Ensemble (GCMC) using the test-area method. We analyse the effect on the adsorption and interfacial phenomena of volume and energy factors, in particular, the pore diameter and the ratio between SF and fluid–fluid dispersive energy parameters, respectively. Results from DFT and GCMC simulations were found to be comparable, which points to their reliability. 相似文献
19.
As a candidate for hydrogen storage medium, geometric stability and hydrogen capacity of Ca-decorated graphene with topological defects are investigated using the first-principle based on density functional theory (DFT), specifically for the experimentally realizable single carbon vacancy (SV), 585 double carbon vacancy (585 DCV) and 555–777 double carbon vacancy (555–777 DCV) defects. It is found that Ca atom can be stabilized on above defective graphenes since Ca׳s binding energy on vacancy defect is much larger than its cohesive energy. Up to six H2 molecules can stably bind to a Ca atom on defective graphene with the average adsorption energies of 0.17–0.39 eV/H2. The hybridization of the Ca-3d orbitals with H2-σorbitals and the electrostatic interaction between the Ca cation and the induced H2 dipole both contribute to the H2 molecules binding. Double-side Ca-decorated graphene with 585 DCV and 555–777 DCV defects can theoretically reach a gravimetric capacity of 5.2 wt% hydrogen, indicating that Ca-decorated defective graphene can be used as a promising material for high density hydrogen storage. 相似文献
20.
CO adsorption on Cu(1 1 1) and Cu(0 0 1) surfaces has been studied within ab initio density functional theory (DFT). The structural, vibrational and thermodynamic properties of the adsorbate–substrate complex have been calculated. Calculations within the generalized gradient approximation (GGA) predict adsorption in the threefold hollow on Cu(1 1 1) and in the bridge-site on Cu(0 0 1), instead of on-top as found experimentally. It is demonstrated that the correct site preference is achieved if the underestimation of the HOMO–LUMO gap of CO characteristic for DFT is corrected by applying a molecular DFT + U approach. The DFT + U approach also produces good agreement with the experimentally measured adsorption energies, while introducing only small changes in the calculated geometrical and vibrational properties further improving agreement with experiment which is fair already at the GGA level. 相似文献